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Abstract

Systems that exhibit topologically protected edge states are interesting both from a fundamental

point of view as well as for potential applications, the latter because of the absence of back-

scattering and robustness to perturbations. It is desirable to be able to control and manipulate

such edge states. Here, we show that artificial square ices can incorporate both features: an

interfacial Dzyaloshinksii-Moriya gives rise to topologically non-trivial magnon bands, and the

equilibrium state of the spin ice is reconfigurable with different configurations having different

magnon dispersions and topology. The topology is found to develop as odd-symmetry bulk and

edge magnon bands approach each other, so that constructive band inversion occurs in reciprocal

space. Our results show that topologically protected bands are supported in square spin ices.
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I. INTRODUCTION

Topological insulators1–6 are generally materials that are insulating in the bulk but have

conducting dissipationless edge states7. In two dimensions, topological insulators (TIs) in-

clude quantum Hall (QH) states8,9. QH edges states are metallic and chiral in that electrons

on one physical edge move only in one direction; this prohibits back-scattering and makes

the states dissipationless. The existence of topologically protected edge states is guaranteed

if the band structure of the system has a non-trivial topology. A non-trivial topology is

characterized by a non-zero Chern number, which is related to the Berry’s phase that Bloch

states |un,~k〉, where ~k is a wavevector in the first Brillouin zone and n a band index, acquire

when transported around a closed loop in the Brillouin zone; the Chern number is the total

flux of the Berry’s phase in the Brillouin zone. Therefore, in order for there to be a non-

trivial topology, the Berry’s phase accumulated around a closed loop cannot be zero. This

may happen, but is not assured, if time-reversal invariance is broken.

Topologically protected edge states are of great interest for potential applications, for ex-

ample in information technology or communication systems. This extends beyond electronic

systems, and includes photonic TIs10,11 as well as certain magnonic crystals12,13. In these

latter systems, the band structure of spin excitations, or magnons, exhibit a topological

order with non-trivial Chern number and protected edge states determined by the materials

set and structure of the systems. However, systems with potential practical applications

should be reconfigurable, so that the band structure of excitations can be modified with

some external control parameter.

Artificial spin ices (ASIs)14–16 are systems that allow for such reconfiguration. ASIs are

composed of geometrically placed magnetic nanoislands coupled through dipolar interac-

tions. These interactions stabilize the nanoislands’ magnetization in configurations such

that the magnetization at the lattice vertices satisfy an “ice rule” in low-energy states.

ASIs are geometrically frustrated by design, that is, not all interactions at a given ver-

tex can be simultaneously minimized. This leads to complex energy surfaces with many

local energy minima. Consequently, significant efforts have been devoted to control and

manipulate the magnetization state either by thermal or applied field protocols17 or novel

geometries18–22. From a dynamic perspective, ASIs compose a super-lattice that can be con-

sidered a magnonic crystal and therefore exhibit a rich band structure23–29. This makes ASIs
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a natural system in which to explore reconfigurable magnonics30, where the properties of

the spin wave band structure can be actively controlled31–37 to achieve functionality, chiefly

for miniaturized microwave electronics38–42.

A promising geometry for reconfigurable magnonics are square ASIs, where the magnetic

nanoislands are placed at the sites of a square lattice. As a super-lattice, these are similar

to arrays of dipolarly-coupled nanodots28,43 for which analytical methods calculating band

diagrams under a macrospin approximation have been developed44–46. However, an initial

micromagnetic study by Gliga et al.31 suggested that frustration in square ASIs modifies

magnon modes by the existence of underlying defects known as Dirac strings16. These defects

originate as the ice rule is locally broken, yet conserving the overall topological charge of the

system. More recently, experiments in extended square ASIs lattices34 demonstrated that

the magnetization ground state determines the features and eigenfrequencies of the magnon

modes. This conclusion was supported by a tight-binding-inspired semi-analytical model33

that captures the dominant dipole-dipole, long-range coupling between the nanoislands, and

thus provides a means to numerically compute the square ASI’s band structure, otherwise

impractical by more accurate models, e.g., micromagnetic simulations.

Square ASIs, though reconfigurable magnonic crystals, have magnon band structures

with trivial topologies. It is of great interest to devise magnonic crystals that have non-

trivial topological order and that are reconfigurable. One way to realize such systems is to

introduce interfacial Dzyaloshinskii-Moriya interactions (DMI)47,48 to ASIs. DMI generally

manifests as a chiral magnetic interaction in three-dimensional systems with broken inversion

symmetry and can give rise to topological edge states in pyrochlores49 and spin textures in

uniaxial thin film ferromagnets such as skyrmions50–52. More conveniently, an interfacial

DMI can arise when a trivial magnet is deposited as a thin film on a strong spin-orbit

scatterer, such as Ta or Pt. This effect has been used experimentally51 and numerically52–54

to nucleate and dynamically drive skyrmions at room temperature. Interfacial DMI naturally

has a thickness-dependent strength55, parametrized by an interfacial energy D in units of

J/m2. Although most of the research on DMI has focused on topological structures or non-

reciprocal spin wave dispersion in extended films55,56, the effect of DMI for spin waves in

magnetic nanoislands has been studied only recently57. In the context of magnonic square

ASIs, the addition of a chiral interfacial DMI suggests the possibility of topological magnon

modes and novel features in their band structure.

3



The purpose of our work is to demonstrate that square ASIs subject to interfacial DMI

admit topologically non-trivial bands, analogous to electronic TIs, and topologically trivial

bands toggled only by the underlying magnetic configuration. In a magnonic system without

DMI, the magnons are elliptical revolutions of the magnetization about its local equilibrium

direction, and modes at (±~k, n) are degenerate. The form of the interfacial DMI breaks this

degeneracy57 as it gives rise to an effective magnetic field

~HDMI =
2D

Ms

[(∇ · ~m) ẑ −∇mz] (1)

that couples differently to states at ~k and −~k and therefore gives rise to a coherent Berry

phase accumulation. We will show that by reconfiguring the equilibrium state of the lattice

the non-trivial topology can be turned off. Moreover, and external, in-plane magnetic field

offers another degree of control to toggle topological bands and their propagation direction.

II. SEMI-ANALYTICAL MODEL

To compute the band structure of a square ASI, it is necessary to calculate the long-range,

dipole-dipole mediated magnon dispersion as a function of the reciprocal wavevector ~k. For

each wavevector, the dispersion relation is obtained from small-amplitude perturbations of

the Larmor equation
∂ ~m

∂t
= −γµ0 ~m× ~Heff , (2)

where γ is the gyromagnetic ratio, µ0 is the vacuum permeability, ~m is the magnetization

vector normalized to the saturation magnetization Ms, and ~Heff is the effective field that in-

cludes diverse physical effects. In order to obtain a meaningful dispersion relation, a minimal

model for the effective field must include an external field, exchange coupling, anisotropy,

and DMI within a nanomagnet as well as dipolar interactions between nanomagnets. Given

the cubic decay of the dipolar interactions, solving Eq. (2) with such an effective field com-

poses a daunting task requiring massive computational resources. While such a study can be

performed58, it is attractive to formulate a minimal model that captures the relevant physics

of the system and minimizes the computation time. This is especially important to explore

the existence of band-inversion, which requires a sufficiently resolved band structure. There

are many possibilities to tackle this problem such as utilizing under-resolved micromagnetics

to reduce the computational overhead (similar to the atomic structures explored in Refs. [12]
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and [13]), extrapolate from simpler systems, e.g., in Ref. [59], or utilize periodic boundary

conditions (PBCs) to estimate the band structure, e.g., in Ref. 43. However, these meth-

ods neglect important physical effects such as anisotropy and the long-range interactions

across a periodic lattice. Instead, a tight-binding-inspired semi-analytical model including

the relevant physics for square ASIs was recently shown to yield good agreement with both

micromagnetic simulations33 and experiments34.

The semi-analytical method is based on Eq. (2) and relies on the conserved amplitude

of the magnetization vector, |~m| = 1, to represent small-amplitude perturbations from a

homogeneous state as complex amplitudes, a. This is achieved by performing a Holstein-

Primakoff transformation on the magnetization vector

a =
mξ + imη√

2Ms(Ms +mζ)
, (3)

where ~m = (mξ,mη,mζ) such that mζ is parallel to the local equilibrium magnetization

direction and (mξ,mη) represent orthogonal, small perturbations60. Substituting Eq. 3 into

Eq. 2, a Hamiltonian system of equations is obtained as a function of a and a∗ following

the procedure outlined in Ref. 60. The resulting Hamiltonian model can be generalized

for 2N interacting complex amplitudes and their complex conjugates, a and a∗, so that

∂ta = i∂a∗H(a, a∗) and ∂ta
∗ = −i∂aH(a, a∗), where H(a, a∗) is a Hamiltonian matrix33.

These equations can be rewritten as an eigenvalue problem by means of Colpa’s grand

dynamical matrix61

ωψ = Hψ =

H(1,2) H(2,2)

H(1,1) H(2,1)

ψ, (4)

from which we obtain the eigenvalues ω and eigenvectors ψ corresponding to each augmented

vector of complex amplitudes [aT , a†]. Because of the periodic structure of the ASI, we can

label the eigenvectors ψ by a wavector ~k in the first Brillouin zone, and a band index n.

The Hamiltonian matrix H is related to the effective field via H = −γδW/(2Ms), where

δW = −
∫
~Heff( ~M) · d ~M is the energy functional. In Ref. 33, the Hamiltonian matrices

for an external in-plane field as well as anisotropy, dipole-dipole, and exchange fields were

derived. To minimize finite-size errors from the long-range dipole-dipole Hamiltonian matrix,

the lattice is allowed to grow until the relative error is no greater than 10−6. For all ~k,

this corresponds to a lattice of 100 × 100 unit cells. The exchange interactions within the

nanomagnet are also critical to correctly describe edge modes62 that are manifested in the
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magnon dispersion32. Because we are interested in the low-energy sector of the square ASI

dynamics, the magnetic nanoislands are divided in 3 macrospins coupled by an effective

exchange strength, which has been shown to return a faithful representation of the lowest

energy bulk and edge modes33,34.

Here, we extend the model to include DMI, which means we have to include the effective

interfacial DMI field52, given by Eq. (1). This field favors a chiral tilt of the perpendicular

magnetization component that stabilizes helical order in extended films63. Therefore, the

model must consider a small-amplitude precession about an arbitrary direction of the unit

sphere. The resulting Hamiltonian matrices for the effective interfacial DMI field are

H(1,1)
DMI = D′


V1 O O O

O H1 O O

O O V1 O

O O O H1

 (5a)

H(1,2)
DMI = D′


V2 O O O

O H2 O O

O O V2 O

O O O H2

 , (5b)

where V i,j
1 , V i,j

2 , H i,j
1 , and H i,j

2 are 3× 3 complex matrices relating the intra-island mange-

tization components, given in the appendix, and O are 3 × 3 zero matrices. The effective

DMI parameter in our discrete, macrospin representation is given by

D′ =
γD

2Mst
, (6)

where the inverse dependence on thickness reflects the interfacial nature of this effect. How-

ever, we stress that the field Eq. (1) is considered to be homogeneous across the thickness;

this is a good approximation for thin nanoislands in which the magnetization at any point

is uniform through the thickness.

Because the semi-analytical method relies on a second-order perturbation of a well-defined

magnetization state, the effect of DMI can only be included as a deviation from such a

state i.e., low DMI strengths. The initial equilibrium states are determined by energy

minimization using Eq. (2) with an added Gilbert damping term, which we calculate from

full-scale micromagnetic simulations as detailed below.

6



III. CHERN NUMBER

The introduction of DMI in a square ASI breaks time-reversal invariance which suggests

that topological modes may exist. To test for topology, we calculate the Chern number Cn

for band n, defined as

Cn =
1

2πi

∫ [
∂xAy(~k)− ∂yAx(~k)

]
d2k (7)

where Aµ = 〈ψ(k), ∂µψ(k)〉 is the Berry connection, µ = x, y, and the eigenmodes ψ belong

to band n. A non-zero Chern number indicates that the band experiences inversion which,

in a finite lattice, leads to topological edge modes. We stress that the total Chern number

of the band structure, obtained by summing Cn over the bands n, is conserved to zero.

Therefore, any non-zero Chern number must be balanced with an opposite-signed Chern

number.

The numerical computation of the Chern number is performed following the method given

in Ref. [64]. This method relies on lattice gauge theory to calculate the Chern number in a

discretized Brillouin zone, minimizing numerical artifacts that might lead to a non-integer

Chern number.

IV. EQUILIBRIUM MAGNETIZATION STATES: MICROMAGNETIC SIMULA-

TIONS

The semi-analytical model relies on determining the dispersion of small-amplitude modes

about an equilibrium state. To determine these states in square ASIs subject to interfacial

DMI, we perform micromagnetic simulations with both Mumax365 and our in-house, dou-

ble precision micromagnetic code used in e.g., Refs. [52, 66–69]. The square ASI unit cell

and geometry is schematically shown in Fig. 1(a), with lattice constant d = 390 nm. The

nanoisland are considered to be identical stadia, with lateral dimensions l = 290 nm and

w = 130 nm, and variable thickness. These sizes are large enough for the nanoislands to

support multiple modes. We consider two materials, Permalloy (Py) with Ms = 790 A/m

and Co75Fe25 with Ms = 1200 kA/m, both with exchange stiffness A = 13 pJ/m for sim-

plicity. A heavy metal layer below the square ASI endows the ferromagnetic nanoislands

with an interfacial DMI. Numerically, we solve for a square ASI unit cell and impose pe-

riodic boundary conditions to simulate an extended lattice. To correctly account for the
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FIG. 1. (a) Schematic of the square ASI unit cell. The composing nanoislands are identical

with length l, width w, and thickness t. The lattice constant d is taken as the center-to-center

distance between adjacent nanoislands. Interfacial DMI is imparted through a heavy metal layer.

(b) Schematic of a vortex (type-I) unit cell. (c) Schematic of a remanent (type-II) unit cell.

nanoislands’ rounded edges in the micromagnetic finite difference scheme, we use a rather

small cell size of 0.7 nm in-plane and 5 nm along the thickness70. Both micromagnetic codes

returned identical ground states.

Two equilibrium configurations are computed: vortex (type-I) and remanent (type-II)

states, schematically depicted in Fig. 1(b) and (c), respectively. The simulation is initialized

by setting a homogeneous magnetization in each nanoisland composing either of these states

and allowing the simulation to relax using an artificially high Gilbert damping constant

α = 1. In the remanent state, the equilibrium configurations are S-states and they are

insensitive to DMI strength. In contrast, the vortex state exhibits a richer behavior as

a function of D. For D = 0, S-states are obtained, as shown in Fig. 2(a-c) for the Py

nanoislands of thicknesses 10, 15, and 20 nm, where grayscale and arrows represent the ẑ and

in-plane magnetization component of the topmost layer, respectively. The inclusion of DMI

favors C-states for all thicknesses, as shown for D = 1 mJ/m2 in Fig. 2(d-f). Additionally,

the DMI contributes to an out-of-plane tilt of the magnetization at the nanoislands’ edges

that is odd along the length of the island. However, this tilt is small and does not contribute

significantly to the band structure. These simulations confirm that a moderate DMI only
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slightly perturbs the stable magnetization state in a square ASI, making it possible to study

the full band structure by the semi-analytical model. We note that labyrinthine, chiral

magnetization states are obtained for all thicknesses when D ≥ 3 mJ/m2. For the Co75Fe25

nanoislands (not shown), a transition between a homogeneous, “onion” state and a C-state

is observed as a function of D.

The spectrum at the Γ point can be obtained micromagnetically by analyzing the equi-

libration after a weak perturbation of the system. We use a spatially homogeneous square

field pulse as perturbation, with a duration of 50 ps and a field magnitude of 10 mT applied

along the (1, 1) direction. The system is then relaxed for 10 ns using a Gilbert damping

of α = 0.01. This method only couples the uniform field to even modes but allows us to

discern the dominant modes in one run. In the remanent state, constant eigenfrequencies

are obtained as a function of D, as expected form the negligible impact of DMI on the

equilibrium configuration. These eigenfrequencies are in agreement with those observed in

Ref. 33 and are topologically trivial, which we confirmed by calculating the Chern numbers

of the magnon bands. In the vortex state, the D-dependent eigenfrequencies are shown in

Fig. 3 for selected thicknesses of (a) Py and (b) Co75Fe25 nanoislands. The empty and filled

red circles represent even bulk and edge modes, respectively. We note as a trend that the

frequency drops as a function of D, consistent with the lower frequencies in the band dia-

gram obtained from a C-state relative to an S-state33. It is also important to recognize that

whereas we observe a single, fundamental bulk mode, the edge mode frequencies are split,

consistent with the spin wave non-reciprocity induced by DMI and evidenced by a shift in

their dispersion relation55,57. However, we note that the frequency splitting is small, on the

order of our numerical resolution of 24.5 MHz.

V. BAND STRUCTURE: SEMI-ANALYTICAL CALCULATIONS

Motivated by the micromagnetic simulations, we now utilize the semi-analytical model

to solve for the eigenvalues in a square ASI with variable thickness and DMI. As a first

step, we validate the semi-analytical model by finding the eigenvalues at the Γ point as a

function of D in the vortex state. Because of the stadium-shape of the nanoislands, we

adjust the anisotropy factors, estimated to first order by an ellipsoid71. This is achieved

by setting the equilibrium magnetization estimated from micromagnetic simulations and
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FIG. 2. Micromagnetically computed ground states for a series of Py nanoislands of different

thicknesses with (a-c) D = 0 exhibiting S-states and (d-f) D = 1 mJ/m2 exhibiting C-states. The

gray scale and arrows represent the ẑ and in-plane magnetization components, respectively.

fitting the bulk and edge mode. For a finite D, we fit the eigenvalues by adjusting the

in-plane tilt of the edge magnetization vectors in the semi-analytical model and assuming

that all nanoislands in the unit cell behave identically. See Appendix B for the fitted

parameters. Finally, we extrapolate the in-plane tilt of the edge magnetization vectors by a

spline through the fitted points at D = 0, 0.1, 0.25, 0.5, 0.75, and 1 mJ/m2. The resulting D-

dependent eigenfrequencies at the Γ point are shown in Fig. 3 for (a) Py and (b) Co75Fe25,

where the solid blue and black dashed curves represent the even bulk and edge modes,

respectively. Good qualitative agreement between micromagnetic simulations and semi-

analytical calculations is obtained, suggesting that the semi-analytical model captures the

relevant physics required to describe the dipole-mediated band structure including interfacial

DMI. We note that the magnetization tilt required to fit the eigenfrequencies were below

25 degrees in all cases, in agreement with the equilibrium states shown in Fig. 2. In the case of

20 nm thick Permalloy nanoislands, the calculated edge mode eigenfrequencies significantly
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FIG. 3. Even frequencies at the Γ point as a function of D for (a) Py nanoislands of thicknesses

t = 10, 15, and 20 nm and (b) Co75Fe25 nanoislands of thicknesses t = 5, 10, and 15 nm. Good

agreement is observed between the even bulk mode obtained semi-analytically (solid blue curves)

and micromagnetically (empty red circles). The even edge mode obtained semi-analytically (black

dashed curves) also agrees with those obtained micromagnetically (filled red circles). However,

a qualitative deviation of the D-dependence for 20 nm thick Py nanoislads (a, right panel) is

observed.

deviate from those obtained micromagnetically. This is a consequence of spatial variations

across the thickness of the nanoislands that are not taken into account semi-analytically. For

D > 1 mJ/m2, DMI strongly perturbs the equilibrium state and dynamics at length scales

much smaller than those captured by the three macrospins considered in the semi-analytical

model ensue.

It is worth noting that the semi-analytical model returns a total of twelve bands with

three even- and nine odd-symmetry modes. These correspond to the four nanomagnets in

the unit cell discretized in three exchange-coupled macrospins. As mentioned before, odd-
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FIG. 4. Band diagram for odd modes in 10 nm-thick Py nanoislands. The FBZ path is depicted

at the top of each column. Band diagrams for both D = 0 and D = 0.5 mJ/m2 are shown. (a) Bulk

odd modes exhibit a Dirac cone along the Γ-X direction, indicated by a red arrow. The symmetry

between the paths FBZ+ and FBZ− is broken when D 6= 0; (b) Edge modes exhibit band touching

in the Γ-M direction but for the edge mode bands, these do not accumulate Berry phase and the

band touching occurs both for the topologically trivial and non-trivial cases.

symmetry modes cannot be excited micromagnetically with a homogeneous field; therefore,

the semi-analytically-obtained odd modes are not shown in Fig. 3.

We now calculate the band structure in the vortex state. For this, we compute the

dispersion at ~k = (kx, ky) with kx and ky discretized in 0.05π/d, composing a surface for

each band n in reciprocal space. The band-wise Chern number Cn can be calculated by the

method outlined in Sec. III. When D = 0 we find c = 0 for all thicknesses as expected from

Ref. 33. However, for D 6= 0, we find nonzero Chern numbers for both the bulk and edge

odd-symmetry modes. This implies that DMI breaks the band structure inversion symmetry

in reciprocal space.

As an example, we discuss below the first Brillouin zone (FBZ) band diagrams for D = 0
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(topologically trivial) and D = 0.75 mJ/m2 (topologically non-trivial). The symmetry-

breaking discussed above is most clearly seen for the bulk magnon bands by plotting the

bands in FBZ± defined as a path through the Γ-X±-M-Γ directions, where the signs represent

the relative sign of the kx and ky wavevector components, such that X± = π/(2d)(k̂x ± k̂y).

For 10 nm thick Py nanoislands, we show in Fig. 4 the FBZ for the (a) bulk and (b) edge

odd modes. For the bulk modes and with a DMI of D = 0.75 mJ/m2 and FBZ+, the bands

touch in (small) Dirac cones and exhibit inversion which, from a topological perspective,

indicates constructive Berry phase accumulation and a non-zero Chern number. This is

shown in Fig. 4(a) along the Γ-X+ direction, indicated by a red arrow. In contrast, the

mirror path in FBZ− shown in Fig. 4(a) right panels does not exhibit a Dirac cone for

D 6= 0, and the inequivalence of the two X-points in FBZ+ and FBZ− is clearly exhibited.

For the edge modes, the Dirac cones occur at a similar point along the Γ-X+ direction for

D = 0.75 mJ/m2, shown by the red arrow in Fig. 4(b). Note that these bands do touch

along the Γ-M direction both for D = 0 and D 6= 0 but this does not contribute to the

accumulated Berry’s phase for D 6= 0. Note that, as expected, the topologically non-trivial

bands have oppositely signed Chern numbers, maintaining a trivial overall topology, so that

the sum of the Chern numbers is zero. The same qualitative features are observed in the

FBZ for 10 nm thick Co75Fe25 nanoislads.

Topological bands appear for DMI strengths as low as D = 0.1 mJ/m2 in our simula-

tions. This suggests that topology is a robust feature of the band structure, regardless of the

discretization effects of our computation. However, we emphasize that the odd-symmetry

bands lie within a range of 200 MHz, representing a challenge for possible measurements

at room temperature for these materials because of both intrinsic and extrinsic linewidth

broadening that arise from damping and defects (e.g., edge inhomogeneities from pattern-

ing), respectively. It may be possible to resolve the bands using, e.g., meanderline resonance

absorption72, provided the measured peaks have very good Lorentzian lineshape so that

careful fitting will resolve them. As we discuss in the next section, this issue may be cir-

cumvented by applying an external field that both separates the bands and induces Dirac

cones along specific directions.

In stark contrast to the qualitative features discussed above, the band diagram for the

remanent state, see Fig. 1(c), is topologically trivial as a function of D. This implies that

it possible to toggle between topological and non-topological modes in a square ASIs by

13



configuring the underlying magnetization configuration. In other words, ASIs can be utilized

as a magnonic crystal with reconfigurable topological bands.

We stress that topologically non-trivial bands arise due to the broken degeneracy of ~k

and −~k states in the vortex configuration, mediated by interfacial DMI, that allows for a

coherent Berry phase accumulation. The accompanying band inversion is a general feature

of topologically non-trivial bands and can be further tuned by both material-specific param-

eters, e.g., saturation magnetization, and geometrical parameters, e.g., nanoislands shape

and lattice constant d and other types of ASIs18,19,22.

VI. EXTERNAL FIELD DEPENDENCE

An external magnetic field can tune the band frequency both by varying its magnitude,

|H|, and angle, θH , as previously shown for topologically trivial states33. Here, we explore

the effect of an external, in-plane field on topologically non-trivial bands.

The broken symmetry induced by DMI suggests that the direction of the applied field can

lead to significant changes in the band structure, including loss of topology. We explore the

field magnitude dependence of the band structure at ~k = π/d(0.25, 0.25), the wavevector at

which Dirac cones are observed for bulk modes in both Py and Co75Fe25 nanoislands of 10 nm

in thickness. For Py, the resulting field dependencies are shown in Fig. 5(a) when the field

is along the (1, 0) direction (θH = 0, top panel) or the (1, 1) direction (θH = π/4, bottom

panel). The bulk bands (blue curves) separate with field and mostly blue shift. However,

the odd-symmetry edge exhibit a more complex behavior with field magnitude and angle.

Notably, bands touch for a field of 18 mT along the θH = π/4 direction, indicated by a red

arrow. Computing the full band structures at these conditions (not shown) indicates that

the bands touch in a Dirac cone and the odd-symmetry edge modes become topologically

protected. A similar field dependence is observed for Co75Fe25, shown in Fig. 5(b). In this

case, the field magnitude required to induce a Dirac cone in the odd-symmetry edge modes

is 28 mT, consistent with the higher saturation magnetization of Co75Fe25.

To investigate the onset of Dirac cones at a finite field in more detail, we show in Fig. 6(a)

the band structure at |H| = 18 mT for Py nanoislands and varying in-plane angle. In the

absence of DMI (top panel), the bands do not touch at any angle. In particular, the bandgap

between the odd edge modes is approximately 0.5 GHz. In contrast, for D = 0.5 mJ/m2,
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FIG. 5. Field dependence of the band diagram at ~k = π/d(0.25, 0.25) for (a) Py and (b) Co75Fe25.

The field is directed along the (1,0) direction in the top panel and along the (1,1) direction in the

bottom panel. The red arrows indicate the appearance of a field-dependent Dirac cone at 18 mT

for Py and 28 mT for Co75Fe25.

we observe that Dirac cones appear at π/4 and 3π/4, whereas the bands touching at 0 and

π do not accumulate Berry phase. Because the edge modes now span a frequency range of

approximately 1 GHz as a function of angle, this method would allow one to experimentally

measure Dirac cones in square ASIs. Similar qualitative results are observed for Co75Fe25,

shown in Fig. 6(b), where the bandgap is 1 GHz with D = 0 and frequency span of the odd

edge modes is 5 GHz.

VII. CONCLUSIONS

In summary, we have calculated the spin wave band structure for square ASIs taking into

account interfacial DMI imparted, e.g., by an adjacent heavy metal layer. The chiral nature

of the DMI influences the eigenmodes supported by the square ASI, leading to band inver-

sion through the development of Dirac cones. Our findings constitute a demonstration that

magnon nonreciprocity within a magnetic nanoisland can be manifested at longer wave-

lengths through dipole coupling, leading to topologically protected edge modes in square

ASIs. The magnon bands arise from long-range magnetostatic interactions between modes

in individual islands. Only magnon bands that have odd spatial symmetry at the Brioullin

zone center (k = 0) develop topologically non-trivial modes, consistent with the fact that
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FIG. 6. Angle dependence of the band diagram at ~k = π/d(0.25, 0.25) for (a) Py at |H| = 18 mT;

and (b) Co75Fe25 at |H| = 28 mT. Bands do not touch when D = 0 (top panels) while Dirac cones

are observed in the odd-symmetry edge modes at θH = π/4 and 3π/4 (bottom panels).

these can more efficiently couple with neighboring spins. It is also observed that topological

bands establish a preferred propagation direction that corresponds to the non-reciprocity

imparted by DMI.

The topologically protected magnon bands mentioned above suggest that square ASIs

can withstand both thermal fluctuations and magnon scattering events. This is especially

important for magnonic applications where spin waves are required to travel long distances

in order to achieve logic and data transfer functionality within an all-magnetic circuitry.

Furthermore, these features can be reconfigured and the non-trivial band topology – and

concomitantly topologically protected edge states – turned off by changing the underlying

magnetization configuration of the square ice, i.e., by different field protocols34 to relax the

nanoislands’ magnetization. For instance, one can envision logic circuits based on the pre-

ferred propagation direction of topologically protected waves, toggled by the reconfiguration

of a handful of nanoelements that would act as a tunable gate. It is also possible to envision

modes propagating at the physical edges of the square ASI lattice exhibiting a much lower

decay to magnetic damping based on the non-zero Chern number. However, a finite-sized,

discrete lattice can strongly affect the dispersion of surface waves and a detailed study is

required to assess the existence of true (physical) edge modes.
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It is noteworthy that topology ensues as the bands approach each other in frequency,

making it a challenging measurement due to the spectral broadening arising because of

thermal fluctuations at finite temperatures, and spectral mixing. An alternative is to in-

crease the band separation by utilizing an in-plane magnetic field and perform magnitude-

and angle- dependent measurements to find evidence of Dirac cones at finite wavevectors. A

plausible method to detect the resulting features at finite wavevectors is to use a meander

line patterned on top of the square ASI as an antenna with 10 MHz resolution and care-

fully deconvoluting spectral mixing to discern between the two broad spectral features. By

measuring the bands in square ASIs as a function of the spin-orbit scatterer material and

the thickness of the magnetic material, it would be possible to experimentally determine the

onset of topologically non-trivial bands.
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Appendix A: Matrix components of the DMI Hamiltonian

The Hamiltonian matrices are written in terms of the complex amplitudes a, which are

related to the normalized magnetization vector through their spherical components i.e., the

polar and azimuthal angles, θ = π/2 and ϕ, respectively (See Ref. 60 and Ref. 33 for details).

By performing the cross product ~mi× ~mj, where i and j are two neighboring macrospins in
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a nanoisland, and keeping terms to second order in a, we obtain the 3× 3 matrices

V1 =


0 R1,2

v 0

R2,1
v 0 R2,3

v

0 R3,2
v 0

 , (A1a)

V2 =


S1,2
v + S2,1

v C1,2
v 0

C2,1
v

∑
Sv C2,3

v

0 C3,2
v S2,3

v + S3,2
v

 , (A1b)

H1 =


0 R1,2

h 0

R2,1
h 0 R2,3

h

0 R3,2
h 0

 , (A1c)

H2 =


S1,2
h + S2,1

h C1,2
h 0

C2,1
h

∑
Sh C2,3

h

0 C3,2
h S2,3

h + S3,2
h

 , (A1d)

where
∑
Sv = S1,2

v + S2,1
v + S2,3

v + S3,2
v ,

∑
Sh = S1,2

h + S2,1
h + S2,3

h + S3,2
h , and

Ri,j
v = sin θi sinϕi cos θj − sin θj sinϕj cos θi

+i (| cosϕj| cos θi − | cosϕi| cos θj) (A2a)

Si,jv = 2 (cos θj sinϕj sin θi − cos θi sinϕi sin θj) (A2b)

Ci,j
v = sin θj sinϕj cos θi − sin θi sinϕi cos θj

+i (| cosϕi| cos θj + | cosϕj| cos θi) (A2c)

Ri,j
h = sin θi cosϕi cos θj − sin θj cosϕj cos θi

+i (| sinϕj| cos θi − | sinϕi| cos θj) (A2d)

Si,jh = 2 (cos θj cosϕj sin θi − cos θi cosϕi sin θj) (A2e)

Ci,j
h = sin θj cosϕj cos θi − sin θi cosϕi cos θj

+i (| sinϕi| cos θj + | sinϕj| cos θi) (A2f)

(A2g)
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TABLE I. Fitted anisotropy factors used in the semi-analytical calculations and the first-order

estimates from an ellipsoid.

Thickness Py Co75Fe25 Ellipsoid71

5 nm N = 0.957 N = 0.9573

L = 0.007 L = 0.0139

M = 0.036 M = 0.0287

10 nm N = 0.925 N = 0.930 N = 0.9146

L = 0.020 L = 0.014 L = 0.0279

M = 0.065 M = 0.056 M = 0.0575

15 nm N = 0.890 N = 0.860 N = 0.8720

L = 0.020 L = 0.037 L = 0.0418

M = 0.090 M = 0.103 M = 0.0862

20 nm N = 0.780 N = 0.8293

L = 0.058 L = 0.0557

M = 0.162 M = 0.1150

Appendix B: Fitted parameters for the semi-analytical model

To fit the micromagnetically to the semi-analytically calculated eigenfrequencies, we per-

form a two-step fitting for the anisotropy factors and the magnetization tilt angles. The

fitted anisotropy factors for Py and Co75Fe25 for each thickness are listed in table I and

compared to the anisotropy factors from an ellipsoid71. The nomenclature N , L, M is used

for the out-of-plane, easy, and hard axis anisotropy factors.

The angles are fitted for each nanoislands to obtain quantitative agreement between the

micromagnetic and semi-analytic even bulk and edge modes. The fitted angles are listed in

table II for Py and table III for Co75Fe25. To account for both S and C states, the angles are

fitted for both the north and south macrospins, relative to the direction of the magnetization

in each nanoisland. The fitted angles in all cases are similar to those obtained by averaging

the magnetization angles of the micromagnetic ground states. For example, in the case of

Py nanoislands of 15 nm, micromagnetic simulations return north and south tilt angles of

13 and −13 deg at D = 0.5 mJ/m2 comparable to the fitted north and south tilt angles of
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TABLE II. Fitted north (N) and south (S) tilt angles for Py.

D 10 nm 15 nm 20 nm

0 mJ/m2 N = -10 deg N = -15 deg N = -15 deg

S = -10 deg S = -15 deg S = -15 deg

0.10 mJ/m2 N = -5 deg N = 0 deg N = -1 deg

S = -10 deg S = -10 deg S = 15 deg

0.25 mJ/m2 N = 12 deg N = 10 deg N = 5 deg

S = -12 deg S = -10 deg S = -15 deg

0.50 mJ/m2 N = 13 deg N = 15 deg N = 10 deg

S = -13 deg S = -15 deg S = -10 deg

0.75 mJ/m2 N = 22 deg N = 20 deg N = 15 deg

S = -22 deg S = -20 deg S = -15 deg

1.00 mJ/m2 N = 25 deg N = 25 deg N = 20 deg

S = -25 deg S = -25 deg S = -20 deg

15 and −15 deg.
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31 Sebastian Gliga, Attila Kákay, Riccardo Hertel, and Olle G. Heinonen, “Spectral analysis of

topological defects in an artificial spin-ice lattice,” Phys. Rev. Lett. 110, 117205 (2013).
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