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Abstract: Let G be a simple undirected graph containing n vertices. Assume G is connected. Let D(G)

be the distance matrix, DL(G) be the distance Laplacian, DQ(G) be the distance signless Laplacian,
and Tr(G) be the diagonal matrix of the vertex transmissions, respectively. Furthermore, we denote
by Dα(G) the generalized distance matrix, i.e., Dα(G) = αTr(G) + (1− α)D(G), where α ∈ [0, 1].
In this paper, we establish some new sharp bounds for the generalized distance spectral radius of
G, making use of some graph parameters like the order n, the diameter, the minimum degree, the
second minimum degree, the transmission degree, the second transmission degree and the parameter
α, improving some bounds recently given in the literature. We also characterize the extremal graphs
attaining these bounds. As an special cases of our results, we will be able to cover some of the bounds
recently given in the literature for the case of distance matrix and distance signless Laplacian matrix.
We also obtain new bounds for the k-th generalized distance eigenvalue.

Keywords: distance matrix (spectrum); distance signlees Laplacian matrix (spectrum); (generalized)
distance matrix; spectral radius; transmission regular graph

MSC: Primary: 05C50, 05C12; Secondary: 15A18

1. Introduction

We will consider simple finite graphs in this paper. A (simple) graph is denoted by G =

(V(G), E(G)), where V(G) = {v1, v2, . . . , vn} represents its vertex set and E(G) represents its edge set.
The order of G is the number of vertices represented by n = |V(G)| and its size is the number of edges
represented by m = |E(G)|. The neighborhood N(v) of a vertex v consists of the set of vertices that are
adjacent to it. The degree dG(v) or simply d(v) is the number of vertices in N(v). In a regular graph,
all its vertices have the same degree. Let duv be the distance between two vertices u, v ∈ V(G). It is
defined as the length of a shortest path. D(G) = (duv)u,v∈V(G) is called the distance matrix of G. G is
the complement of the graph G. It has the same vertex set with G but its edge set consists of the edges
not present in G. Moreover, the complete graph Kn, the complete bipartite graph Ks,t, the path Pn, and
the cycle Cn are defined in the conventional way.

The transmission TrG(v) of a vertex v is the sum of the distances from v to all other vertices in G,
i.e., TrG(v) = ∑

u∈V(G)
duv. A graph G is said to be k-transmission regular if TrG(v) = k, for each v ∈ V(G).

The transmission (also called the Wiener index) of a graph G, denoted by W(G), is the sum of distances
between all unordered pairs of vertices in G. We have W(G) = 1

2 ∑
v∈V(G)

TrG(v).
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For a vertex vi ∈ V(G), TrG(vi) is also referred to as the transmission degree, or shortly Tri. The
sequence of transmission degrees {Tr1, Tr2, . . . , Trn} is the transmission degree sequence of the graph.

Ti =
n

∑
j=1

dijTrj is called the second transmission degree of vi.

Distance matrix and its spectrum has been studied extensively in the literature, see e.g., [6].
Compared to adjacency matrix, distance matrix encapsulates more information such as a wide range
of walk-related parameters, which can be applicable in thermodynamic calculations and have some
biological applications in terms of molecular characterization. It is known that embedding theory and
molecular stability have to do with graph distance matrix.

Almost all results obtained for the distance matrix of trees were extended to the case of weighted
trees by Bapat [12] and Bapat et al. [13]. Not only different classes of graphs but the definition of
distance matrix has been extended. Indeed, Bapat et al. [14] generalized the concept of the distance
matrix to that of q-analogue of the distance matrix. Let Tr(G) = diag(Tr1, Tr2, . . . , Trn) be the diagonal
matrix of vertex transmissions of G. The works [7–9] introduced the distance Laplacian and the
distance signless Laplacian matrix for a connected graph G. The matrix DL(G) = Tr(G)− D(G) is
referred to as the distance Laplacian matrix of G, while the matrix DQ(G) = Tr(G) + D(G) is the distance
signless Laplacian matrix of G. Spectral properties of D(G) and DQ(G) have been extensively studied
since then.

Let A be the adjacency matrix and Deg(G) = diag(d1, d2, . . . , dn) be the degree matrix G. Q(G) =

Deg(G) + A is the signless Laplacian matrix of G. This matrix has been put forth by Cvetkovic in [16]
and since then studied extensively by many researchers. For detailed coverage of this research
see [17–20] and the references therein. To digging out the contribution of these summands in Q(G),
Nikiforov in [33] proposed to study the α-adjacency matrix Aα(G) of a graph G given by Aα(G) =

α Deg(G) + (1− α)A, where α ∈ [0, 1]. We see that Aα(G) is a convex combination of the matrices
A and Deg(G). Since A0(G) = A and 2A1/2(G) = Q(G), the matrix Aα(G) can underpin a unified
theory of A and Q(G). Motivated by [33], Cui et al. [15] introduced the convex combinations Dα(G) of
Tr(G) and D(G). The matrix Dα(G) = αTr(G) + (1− α)D(G), 0 ≤ α ≤ 1, is called generalized distance
matrix of G. Therefore the generalized distance matrix can be applied to the study of other less general
constructions. This not only gives new results for several matrices simultaneously, but also serves the
unification of known theorems.

Since the matrix Dα(G) is real and symmetric, its eigenvalues can be arranged as: ∂1 ≥ ∂2 ≥
· · · ≥ ∂n, where ∂1 is referred to as the generalized distance spectral radius of G. For simplicity, ∂(G) is the
shorthand for ∂1(G). By the Perron-Frobenius theorem, ∂(G) is unique and it has a unique generalized
distance Perron vector, X, which is positive. This is due to the fact that Dα(G) is non-negative and
irreducible.

A column vector X = (x1, x2, . . . , xn)T ∈ Rn is a function defined on V(G). We have X(vi) = xi
for all i. Moreover,

XT Dα(G)X = α
n

∑
i=1

Tr(vi)x2
i + 2(1− α) ∑

1≤i<j≤n
d(vi, vj)xixj,

and λ has an eigenvector X if and only if X 6= 0 and

λxv = αTr(vi)xi + (1− α)
n

∑
j=1

d(vi, vj)xj.

They are often referred to as the (λ, x)-eigenequations of G. If X ∈ Rn has at least one non-negative
element and it is normalized, then in the light of the Rayleigh’s principle, it can be seen that

∂(G) ≥ XT Dα(G)X,
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where the equality holds if and only if X becomes the generalized distance Perron vector of G.
Spectral graph theory has been an active research field for the past decades, in which for example

distance signless Laplacian spectrum has been intensively explored. The work [41] identified the
graphs with minimum distance signless Laplacian spectral radius among some special classes of
graphs. The unique graphs with minimum and second-minimum distance signless Laplacian spectral
radii among all bicyclic graphs of the same order are identified in [40]. In [24], the authors show some
bounding inequalities for distance signless Laplacian spectral radius by utilizing vertex transmissions.
In [26], chromatic number is used to derive a lower bound for distance signless Laplacian spectral
radius. The distance signless Laplacian spectrum has varies connections with other interesting
graph topics such as chromatic number [10]; domination and independence numbers [21], Estrada
indices [4,5,22,23,34–36,38], cospectrality [11,42], multiplicity of the distance (signless) Laplacian
eigenvalues [25,29,30] and many more, see e.g., [1–3,27,28,32].

The rest of the paper is organized as follows. In Section 2, we obtain some bounds for the
generalized distance spectral radius of graphs using the diameter, the order, the minimum degree, the
second minimum degree, the transmission degree, the second transmission degree and the parameter
α. We then characterize the extremal graphs. In Section 3, we are devoted to derive new upper and
lower bounds for the k-th generalized distance eigenvalue of the graph G using signless Laplacian
eigenvalues and the α-adjacency eigenvalues.

2. Bounds on Generalized Distance Spectral Radius

In this section, we obtain bounds for the generalized distance spectral radius, in terms of the
diameter, the order, the minimum degree, the second minimum degree, the transmission degree, the
second transmission degree and the parameter α.

The following lemma can be found in [31].

Lemma 1. If A is an n× n non-negative matrix with the spectral radius λ(A) and row sums r1, r2, . . . , rn,
then

min
1≤i≤n

ri ≤ λ(A) ≤ max
1≤i≤n

ri.

Moreover, if A is irreducible, then both of the equalities holds if and only if the row sums of A are all equal.

The following gives an upper bound for ∂(G), in terms of the order n, the diameter d and the
minimum degree δ of the graph G.

Theorem 1. Let G be a connected graph of order n having diameter d and minimum degree δ. Then

∂(G) ≤ dn− d(d− 1)
2

− 1− δ(d− 1), (1)

with equality if and only if G is a regular graph with diameter ≤ 2.

Proof. First, it is easily seen that,

Trp =
n

∑
j=1

djp ≤ dp + 2 + 3 + · · ·+ (d− 1) + d(n− 1− dp − (d− 2))

= dn− d(d− 1)
2

− 1− dp(d− 1), for all p = 1, 2, . . . , n. (2)
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Let Trmax = max{TrG(vi) : 1 ≤ i ≤ n}. For a matrix A denote λ(A) its largest eigenvalue.
We have

∂(G) = λ
(

α(Tr(G)) + (1− α)D(G)
)

≤ αλ
(
Tr(G)

)
+ (1− α)λ

(
D(G)

)
≤ αTrmax + (1− α)Trmax = Trmax.

Applying Equation (2), the inequality follows.
Suppose that G is regular graph with diameter less than or equal to two, then all coordinates of

the generalized distance Perron vector of G are equal. If d = 1, then G ∼= Kn and ∂ = n− 1. Thus
equality in (1) holds. If d = 2, we get ∂(G) = di + 2(n− 1− di) = 2n− 2− di, and the equality in (1)
holds. Note that the equality in (1) holds if and only if all coordinates the generalized distance Perron
vector are equal, and hence Dα(G) has equal row sums.

Conversely, suppose that equality in (1) holds. This will force inequalities above to become
equations. Then we get Tr1 = Tr2 = · · · = Trn = Trmax, hence all the transmissions of the vertices are
equal and so G is a transmission regular graph. If d ≥ 3, then from the above argument, for every
vertex vi, there is exactly one vertex vj with dG(vi, vj) = 2, and thus d = 3, and for a vertex vs of
eccentricity 2,

∂(G)xs = dsxs + 2(n− 1− ds)xs =

(
3n− 3(3− 1)

2
− 1− ds(3− 1)

)
xs,

implying that ds = n − 2, giving that G = P4. But the Dα(P4) is not transmission regular graph.
Therefore, G turns out to be regular and its diameter can not be greater than 2.

Taking α = 1
2 in Theorem 1, we immediately get the following bound for the distance signless

Laplacian spectral radius ρQ
1 (G), which was proved recently in [27].

Corollary 1. ([27], Theorem 2.6) Let G be a connected graph of order n ≥ 3, with minimum degree δ1, second
minimum degree δ2 and diameter d. Then

ρQ
1 (G) ≤ 2dn− d(d− 1)− 2− (δ1 + δ2)(d− 1),

with equality if and only if G is (transmission) regular graph of diameter d ≤ 2.

Proof. As 2D 1
2
(G) = DQ(G), letting δ = δ1 in Theorem 1, we have

ρQ
1 (G) = 2∂(G) ≤ 2dn− d(d− 1)− 2− 2δ1(d− 1) ≤ 2dn− d(d− 1)− 2− (δ1 + δ2)(d− 1),

and the result follows.

Next, the generalized distance spectral radius ∂(G) of a connected graph and its complement is
characterized in terms of a Nordhaus-Gaddum type inequality.

Corollary 2. Let G be a graph of order n, such that both G and its complement G are connected. Let δ and ∆ be
the minimum degree and the maximum degree of G, respectively. Then

∂(G) + ∂(G) ≤ 2nk− (t− 1)(t + n + δ− ∆− 1)− 2,

where k = max{d, d}, t = min{d, d} and d, d are the diameters of G and G, respectively.
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Proof. Let δ denote the minimum degree of G. Then δ = n− 1− ∆, and by Theorem 1, we have

∂(G) + ∂(G) ≤ dn− d(d− 1)
2

− 1− δ(d− 1) + d̄n− d̄(d̄− 1)
2

− 1− δ̄(d̄− 1)

= n(d + d̄)− 1
2
(d(d− 1) + d̄(d̄− 1))− 2− δ(d− 1)− (n− 1− ∆)(d̄− 1)

≤ 2nk− (t− 1)(t + n + δ− ∆− 1)− 2.

The following gives an upper bound for ∂(G), in terms of the order n, the minimum degree δ = δ1

and the second minimum degree δ2 of the graph G.

Theorem 2. Let G be a connected graph of order n having minimum degree δ1 and second minimum degree δ2.
Then for s = δ1 + δ2, we have

∂(G) ≤ αΨ +
√

α2Ψ2 + 4(1− 2α)Θ
2

, (3)

where Θ =
(

dn− d(d−1)
2 − 1− δ1(d− 1)

) (
dn− d(d−1)

2 − 1− δ2(d− 1)
)

and Ψ = 2dn− d(d− 1)− 2−
s(d− 1). Also equality holds if and only if G is a regular graph with diameter at most two.

Proof. Let X = (x1, x2, . . . , xn)T be the generalized distance Perron vector of graph G and let xi =

max{xk|k = 1, 2, . . . , n} and xj = maxk 6=i{xk|k = 1, 2, . . . , n}. From the ith equation of Dα(G)X =

∂(G)X, we obtain

∂xi = αTrixi + (1− α)
n

∑
k=1,k 6=i

dikxk ≤ αTrixi + (1− α)Trixj. (4)

Similarly, from the jth equation of Dα(G)X = ∂(G)X, we obtain

∂xj = αTrjxj + (1− α)
n

∑
k=1,k 6=j

djkxk ≤ αTrjxj + (1− α)Trjxi. (5)

Now, by (2), we have,(
∂− α

(
dn− d(d− 1)

2
− 1− di(d− 1)

))
xi ≤ (1− α)

(
dn− d(d− 1)

2
− 1− di(d− 1)

)
xj(

∂− α

(
dn− d(d− 1)

2
− 1− dj(d− 1)

))
xj ≤ (1− α)

(
dn− d(d− 1)

2
− 1− dj(d− 1)

)
xi.

Multiplying the corresponding sides of these inequalities and using the fact that xk > 0 for all k,
we obtain

∂2 − α(2dn− d(d− 1)− 2− (d− 1)(di + dj))∂− (1− 2α)ξiξ j ≤ 0,

where ξl = dn− d(d−1)
2 − 1− dl(d− 1), l = i, j, which in turn gives

∂(G) ≤ α(2dn− d(d− 1)− 2− s(d− 1)) +
√

α2(2dn− d(d− 1)− 2− s(d− 1))2 + 4(1− 2α)Θ
2

.

Now, using di + dj ≥ δ1 + δ2, the result follows.
Suppose that equality occurs in (3), then equality occurs in each of the above inequalities.

If equality occurs in (4) and (5), the we obtain xi = xk, for all k = 1, 2, . . . , n giving that G is a
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transmission regular graph. Also, equality in (2), similar to that of Theorem 1, gives that G is a graph
of diameter at most two and equality in di + dj ≥ δ1 + δ2 gives that G is a regular graph. Combining
all these it follows that equality occurs in (3) if G is a regular graph of diameter at most two.

Conversely, if G is a connected δ-regular graph of diameter at most two, then ∂(G) = Tri =

dn− d(d−1)
2 − 1− di(d− 1). Also

α(2dn− d(d− 1)− 2− s(d− 1)) +
√

α2(2dn− d(d− 1)− 2− s(d− 1))2 + 4(1− 2α)Θ
2

=
α(2dn− d(d− 1)− 2− s(d− 1)) + (2dn− d(d− 1)− 2− s(d− 1))(1− α)

2

= dn− d(d− 1)
2

− 1− δ(d− 1) = ∂(G).

That completes the proof.

Remark 1. For any connected graph G of order n having minimum degree δ, the upper bound given by
Theorem 2 is better than the upper bound given by Theorem 1. As

α(2dn− d(d− 1)− 2− s(d− 1)) +
√

α2(2dn− d(d− 1)− 2− s(d− 1))2 + 4(1− 2α)Θ
2

,

≤ α(2dn− d(d− 1)− 2− 2δ(d− 1)) +
√

α2(2dn− d(d− 1)− 2− 2δ(d− 1))2 + 4(1− 2α)Φ
2

,

=
α(2dn− d(d− 1)− 2− 2δ(d− 1)) + (2dn− d(d− 1)− 2− 2δ(d− 1))(1− α)

2

= dn− d(d− 1)
2

− 1− δ(d− 1),

where Φ = (2dn− d(d− 1)− 2− 2δ(d− 1))2.

The following gives an upper bound for ∂(G) by using quantities like transmission degrees as
well as second transmission degrees.

Theorem 3. If the transmission degree sequence and the second transmission degree sequence of G are
{Tr1, Tr2, . . . , Trn} and {T1, T2, . . . , Tn}, respectively, then

∂(G) ≤ max
1≤i≤n

−β +
√

β2 + 4(αTr2
i + (1− α)Ti + βTri)

2

 , (6)

where β ≥ 0 is an unknown parameter. Equality occurs if and only if G is a transmission regular graph.

Proof. Let X = (x1, . . . , xn) be the generalized distance Perron vector of G and xi = max{xj| j =
1, 2, . . . , n}. Since

∂(G)2X = (Dα(G))2X = (αTr + (1− α)D)2X

= α2Tr2X + α(1− α)TrDX + α(1− α)DTrX + (1− α)2D2X,

we have

∂2(G)xi = α2Tr2
i xi + α(1− α)Tri

n

∑
j=1

dijxj + α(1− α)
n

∑
j=1

dijTrjxj + (1− α)2
n

∑
j=1

n

∑
k=1

dijdjkxk.
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Now, we consider a simple quadratic function of ∂(G) :

(∂2(G) + β∂(G))X = (α2Tr2X + α(1− α)TrDX + α(1− α)DTrX + (1− α)2D2X)

+ β(αTrX + (1− α)DX).

Considering the ith equation, we have

(∂2(G) + β∂(G))xi = α2Tr2
i xi + α(1− α)Tri

n

∑
j=1

dijxj + α(1− α)
n

∑
j=1

dijTrjxj

+ (1− α)2
n

∑
j=1

n

∑
k=1

dijdjkxk + β

(
αTrixi + α(1− α)

n

∑
j=1

dijxj

)
.

It is easy to see that the inequalities below are true

α(1− α)Tri

n

∑
j=1

dijxj ≤ α(1− α)Tr2
i xi, α(1− α)

n

∑
j=1

dijTrjxj ≤ α(1− α)Tixi,

(1− α)2
n

∑
j=1

n

∑
k=1

djkdijxk ≤ (1− α)2Tixi, (1− α)
n

∑
j=1

dijxj ≤ (1− α)Trixi.

Hence, we have

(∂2(G) + β∂(G))xi ≤ αTr2
i xi − αTixi + Tixi + βTrixi

⇒ ∂2(G) + β∂(G)− (αTr2
i − (α− 1)Ti + βTri) ≤ 0

⇒ ∂(G) ≤
−β +

√
β2 + 4(αTr2

i − (α− 1)Ti + βTri)

2
.

From this the result follows.
Now, suppose that equality occurs in (6), then each of the above inequalities in the above argument

occur as equalities. Since each of the inequalities

α(1− α)Tri

n

∑
j=1

dijxj ≤ α(1− α)Tr2
i xi, α(1− α)

n

∑
j=1

dijTrjxj ≤ α(1− α)Tixi

and

(1− α)2
n

∑
j=1

n

∑
k=1

djkdijxk ≤ (1− α)2Tixi, (1− α)
n

∑
j=1

dijxj ≤ (1− α)Trixi,

occur as equalities if and only if G is a transmission regular graph. It follows that equality occurs in (6)
if and only if G is a transmission regular graph. That completes the proof.

The following upper bound for the generalized distance spectral radius ∂(G) was obtained in [15]:

∂(G) ≤ max
1≤i≤n

{√
αTr2

i + (1− α)Ti

}
, (7)

with equality if and only if αTr2
i + (1− α)Ti is same for i.
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Remark 2. For a connected graph G having transmission degree sequence {Tr1, Tr2, . . . , Trn} and the second
transmission degree sequence {T1, T2, . . . , Tn}, provided that Ti ≤ Tr2

i for all i, we have

−β +
√

β2 + 4αTr2
i + 4(1− α)Ti + 4βTri

2
≤
√

αTr2
i + (1− α)Ti.

Therefore, the upper bound given by Theorem 3 is better than the upper bound given by (7).

If, in particular we take the parameter β in Theorem 3 equal to the vertex covering number τ, the
edge covering number, the clique number ω, the independence number, the domination number, the
generalized distance rank, minimum transmission degree, maximum transmission degree, etc., then
Theorem 3 gives an upper bound for ∂(G), in terms of the vertex covering number τ, the edge covering
number, the clique number ω, the independence number, the domination number, the generalized
distance rank, minimum transmission degree, maximum transmission degree, etc.

Let xi = min{xj| j = 1, 2, . . . , n} be the minimum among the entries of the generalized distance
Perron vector X = (x1, . . . , xn) of the graph G. Proceeding similar to Theorem 3, we obtain the
following lower bound for ∂(G), in terms of the transmission degrees, the second transmission degrees
and a parameter β.

Theorem 4. If the transmission degree sequence and the second transmission degree sequence of G are
{Tr1, Tr2, . . . , Trn} and {T1, T2, . . . , Tn}, respectively, then

∂(G) ≥ min
1≤i≤n

−β +
√

β2 + 4(αTr2
i + (1− α)Ti + βTri)

2

 ,

where β ≥ 0 is an unknown parameter. Equality occurs if and only if G is a transmission regular graph.

Proof. Similar to the proof of Theorem 3 and is omitted.

The following lower bound for the generalized distance spectral radius was obtained in [15]:

∂(G) ≥ min
1≤i≤n

{√
αTr2

i + (1− α)Ti

}
, (8)

with equality if and only if αTr2
i + (1− α)Ti is same for i.

Similar to Remark 2, it can be seen that the lower bound given by Theorem 4 is better than the
lower bound given by (8) for all graphs G with Ti ≥ Tr2

i , for all i.
Again, if in particular we take the parameter β in Theorem 4 equal to the vertex covering number

τ, the edge covering number, the clique number ω, the independence number, the domination number,
the generalized distance rank, minimum transmission degree, maximum transmission degree, etc, then
Theorem 4 gives a lower bound for ∂(G), in terms of the vertex covering number τ, the edge covering
number, the clique number ω, the independence number, the domination number, the generalized
distance rank, minimum transmission degree, maximum transmission degree, etc.

G1∇G2 is referred to as join of G1 and G2. It is defined by joining every vertex in G1 to every
vertex in G2.

Example 1. (a) Let C4 be the cycle of order 4. One can easily see that C4 is a 4-transmission regular
graph and the generalized distance spectrum of C4 is {4, 4α, 6α − 2[2]}. Hence, ∂(C4) = 4. Moreover,
the transmission degree sequence and the second transmission degree sequence of C4 are {4, 4, 4, 4} and
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{16, 16, 16, 16}, respectively. Now, putting β = Trmax = 4 in the given bound of Theorem 3, we can see that
the equality holds:

∂(C4) ≤
−4 +

√
16 + 4(16α + 16(1− α) + 16)

2
=
−4 +

√
144

2
= 4.

(b) Let Wn+1 be the wheel graph of order n + 1. It is well known that Wn+1 = Cn∇K1. The distance
signless Laplacian matrix of W5 is

DQ(W5) =


5 1 2 1 1
1 5 1 2 1
2 1 5 1 1
1 2 1 5 1
1 1 1 1 4

 .

Hence the distance signless Laplacian spectrum of W5 is spec(W5) =
{

13+
√

41
4 , 13−

√
41

4 , 5
2 , 3

2
[2]
}

, and then

the distance signless Laplacian spectral radius is ρQ
1 (W5) =

13+
√

41
4 . Also, the transmission degree sequence

and the second transmission degree sequence of W5 are {5, 5, 5, 5, 4} and {24, 24, 24, 24, 20}, respectively. As
D 1

2
(G) = 1

2 DQ(G), taking α = 1
2 and β = Trmax = 5 in the given bound of Theorem 3, we immediately get

the following upper bound for the distance signless Laplacian spectral radius ρQ
1 (W5):

1
2

ρQ
1 (W5) ≤

−5 +
√

25 + 50 + 48 + 100
2

=
−5 +

√
223

2
,

which implies that
ρQ

1 (W5) ≤ −5 +
√

223 ' 9.93.

3. Bounds for the k-th Generalized Distance Eigenvalue

In this section, we discuss the relationship between the generalized distance eigenvalues and the
other graph parameters.

The following lemma can be found in [37].

Lemma 2. Let X and Y be Hermitian matrices of order n such that Z = X + Y, and denote the eigenvalues of
a matrix M by λ1 ≥ λ2 ≥ · · · ≥ λn.Then

λk(Z) ≤ λj(X) + λk−j+1(Y), n ≥ k ≥ j ≥ 1,

λk(Z) ≥ λj(X) + λk−j+n(Y), n ≥ j ≥ k ≥ 1,

where λi(M) is the ith largest eigenvalue of the matrix M. Any equality above holds if and only if a unit vector
can be an eigenvector corresponding to each of the three eigenvalues.

The following gives a relation between the generalized distance eigenvalues of the graph G of
diameter 2 and the signless Laplacain eigenvalues of the complement G of the graph G. It also gives a
relation between generalized distance eigenvalues of the graph G of diameter greater than or equal to
3 with the α-adjacency eigenvalues of the complement G of the graph G.

Theorem 5. Let G be a connected graph of order n ≥ 4 having diameter d. Let G be the complement of G and
let q1 ≥ q2 ≥ · · · ≥ qn be the signless Laplacian eigenvalues of G. If d = 2, then for all k = 1, 2, . . . , n, we
have

(3α− 1)n− 2α + (1− 2α)dk + (1− α)qk ≤ ∂k(G) ≤ (2n− 2)α + (1− 2α)dk + (1− α)qk.
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Equality occurs on the right if and only if k = 1 and G is a transmission regular graph and on the left if
and only if k 6= 1 and G is a transmission regular graph.

If d ≥ 3, then for all k = 1, 2, . . . , n, we have

αn− 1 + λk(Aα(G)) + λn(M′) ≤ ∂k(G) ≤ n− 1 + λk(Aα(G)) + λ1(M′),

where Aα(G) = α Deg(G) + (1− α)A is the α-adjacency matrix of G and M′ = αTr′(G) + (1− α)M with
M = (mij) a symmetric matrix of order n having mij = max{0, dij− 2}, dij is the distance between the vertices
vi, vj and Tr′(G) = diag(Tr′1, Tr′2, . . . , Tr′n), Tr′i = ∑

dij≥3
(dij − 2).

Proof. Let G be a connected graph of order n ≥ 4 having diameter d. Let Deg(G) = diag(n− 1−
d1, n− 1− d2, . . . , n− 1− dn) be the diagonal matrix of vertex degrees of G. Suppose that diameter
d of G is two, then transmission degree Tri = 2n− 2− di, for all i, then the distance matrix of G can
be written as D(G) = A + 2A, where A and A are the adjacency matrices of G and G, respectively.
We have

Dα(G) = αTr(G) + (1− α)D(G) = α(2n− 2)I − α Deg(G) + (1− α)(A + 2A)

= α(2n− 2)I − α Deg(G) + (1− α)(A + A) + (1− α)A

= (3nα− n− 2α)I + (1− α)J + (1− 2α)Deg(G) + (1− α)Q(G),

where I is the identity matrix and J is the all one matrix of order n. Taking Y = (3nα− n− 2α)I + (1−
2α)Deg(G) + (1− α)Q(G), X = (1− α)J, j = 1 in the first inequality of Lemma 2 and using the fact
that spec(J) = {n, 0[n−1]}, it follows that

∂k(G) ≤ (2n− 2)α + (1− 2α)dk + (1− α)qk, for all k = 1, 2, . . . , n. (9)

Again, taking Y = (3nα− n− 2α)I + (1− 2α)Deg(G) + (1− α)Q(G), X = (1− α)J and j = n in
the second inequality of Lemma 2, it follows that

∂k(G) ≥ (3α− 1)n− 2α + (1− 2α)dk + (1− α)qk, for all k = 1, 2, . . . , n. (10)

Combining (9) and (10) the first inequality follows. Equality occurs in first inequality if and only
if equality occurs in (9) and (10). Suppose that equality occurs in (9), then by Lemma 2, the eigenvalues
∂k, (3n− 2)α− n + (1− 2α)dk + (1− α)qk and n(1− α) of the matrices Dα(G), X and Y have the same
unit eigenvector. Since 1 = 1

n (1, 1, . . . , 1)T is the unit eigenvector of Y for the eigenvalue n(1− α),
it follows that equality occurs in (9) if and only if 1 is the unit eigenvector for each of the matrices
Dα(G), X and Y. This gives that G is a transmission regular graph and G is a regular graph. Since a
graph of diameter 2 is regular if and only if it is transmission regular and complement of a regular
graph is regular. Using the fact that for a connected graph G the unit vector 1 is an eigenvector for
the eigenvalue ∂1 if and only if G is transmission regular graph, it follows that equality occurs in first
inequality if and only if k = 1 and G is a transmission regular graph.

Suppose that equality occurs in (10), then again by Lemma 2, the eigenvalues ∂k, (3n− 2)α−
n + (1− 2α)dk + (1− α)qk and 0 of the matrices Dα(G), X and Y have the same unit eigenvector x.
Since Jx = 0, it follows that xT1 = 0. Using the fact that the matrix J is symmetric(so its normalized
eigenvectors are orthogonal [43]), we conclude that the vector 1 belongs to the set of eigenvectors of the
matrix J and so of the matrices Dα(G), X. Now, 1 is an eigenvector of the matrices Dα(G) and X, gives
that G is a regular graph. Since for a regular graph of diameter 2 any eigenvector of Q(G) and Dα(G)

is orthogonal to 1, it follows that equality occurs in (10) if and only if k 6= 1 and G is a regular graph.
If d ≥ 3, we define the matrix M = (mij) of order n, where mij = max{0, dij− 2}, dij is the distance

between the vertices vi and vj. The transmission of a vertex vi can be written as Tri = di + 2di + Tr′i ,
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where Tr′i = ∑
dij≥3

(dij − 2), is the contribution from the vertices which are at distance more than two

from vi. For Tr′(G) = diag(Tr′1, Tr′2, . . . , Tr′n), we have

Dα(G) = αTr(G) + (1− α)D(G) = α Deg(G) + 2α Deg(G) + αTr′(G) + (1− α)(A + 2A + M)

= α(Deg(G) + Deg(G)) + (1− α)(A + A) + (α Deg(G) + (1− α)A) + (αTr′(G) + (1− α)M)

= Dα(Kn) + Aα(G) + M′,

where Aα(G) is the α-adjacency matrix of G and M′ = αTr′(G) + (1− α)M. Taking X = Dα(Kn),
Y = Aα(G) + M′ and j = 1 in the first inequality of Lemma 2 and using the fact that spec(Dα(Kn)) =

{n− 1, αn− 1[n−1]}, it follows that

∂k(G) ≤ n− 1 + λk(Aα(G) + M′), for all k = 1, 2, . . . , n.

Again, taking Y = Aα(G), X = M′ and j = 1 in the first inequality of Lemma 2, we obtain

∂k(G) ≤ n− 1 + λk(Aα(G)) + λ1(M′), for all k = 1, 2, . . . , n. (11)

Similarly, taking X = Dα(Kn), Y = Aα(G) + M′ and j = n and then Y = Aα(G), X = M′ and
j = n in the second inequality of Lemma 2, we obtain

∂k(G) ≥ αn− 1 + λk(Aα(G)) + λn(M′), for all k = 1, 2, . . . , n. (12)

From (11) and (12) the second inequality follows. That completes the proof.

It can be seen that the matrix M′ defined in Theorem 5 is positive semi-definite for all 1
2 ≤ α ≤ 1.

Therefore, we have the following observation from Theorem 5.

Corollary 3. Let G be a connected graph of order n ≥ 4 having diameter d ≥ 3. If 1
2 ≤ α ≤ 1, then

∂k(G) ≥ αn− 1 + λk(Aα(G)), for all k = 1, 2, . . . , n,

where Aα(G) = α Deg(G) + (1− α)A is the α-adjacency matrix of G.

It is clear from Corollary 3 that for 1
2 ≤ α ≤ 1, any lower bound for the α-adjacency λk(Aα(G))

gives a lower bound for ∂k and conversely any upper bound for ∂ gives an upper bound for λk(Aα(G)).
We note that Theorem 5 generalizes one of the Theorems (namely Theorem 3.8) given in [8].

Example 2. (a) Let Cn be a cycle of order n. It is well known (see [7]) that Cn is a k-transmission regular
graph with k = n2

4 if n is even and k = n2−1
4 if n is odd. Let n = 4. It is clear that the distance spectrum

of the graph C4 is {4, 0,−2[2]}. Also, since C4 is a 4-transmission regular graph, then Tr(C4) = 4I4 and
so Dα(C4) = 4αI4 + (1− α)D(C4). Hence the generalized distance spectrum of C4 is {4, 4α, 6α − 2[2]}.
Moreover, the signless Laplacian spectrum of C4 is {2[2], 0[2]}. Since the diameter of C4 is 2, hence, applying
Theorem 5, for k = 1, we have,

4α = 4(3α− 1)− 2α + 2(1− 2α) + 2(1− α) ≤ ∂1(C4) = 4 ≤ 6α + 2(1− 2α) + 2(1− α) = 4,

which shows that the equality occurs on right for k = 1 and transmission regular graph C4.
Also, for k = 2, we have

4α = 4(3α− 1)− 2α + 2(1− 2α) + 2(1− α) ≤ ∂2(C4) = 4α ≤ 6α + 2(1− 2α) + 2(1− α) = 4,

which shows that the equality occurs on left for k = 2 and transmission regular graph C4.
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(b) Let C6 be a cycle of order 6. It is clear that the distance spectrum of the graph C6 is {9, 0[2],−1,−4[2]}.
Since C6 is a 9-transmission regular graph, then Tr(C6) = 9I6 and so Dα(C6) = 9αI6 + (1− α)D(C6). Hence,
the generalized distance spectrum of C6 is {9, 9α[2], 10α− 1, 13α− 4[2]}. Also, the α-adjacency spectrum of
C6 is {3, 2α + 1, 3α[2], 5α− 2[2]}. Let M′ be the matrix defined by the Theorem 5, hence the spectrum of M′ is
{1[3], 2α− 1[3]}. Since diameter of the graph C6 is 3, hence, applying Theorem 5, for k = 1, we have

8α + 1 = 6α− 1 + 3 + 2α− 1 ≤ ∂1(C6) = 9 ≤ 5 + 3 + 1 = 9.

Also for k = 2, we have

10α− 1 = 6α− 1 + 2α + 1 + 2α− 1 ≤ ∂2(C6) = 9α ≤ 5 + 2α + 1 + 1 = 2α + 7.

We need the following lemma proved by Hoffman and Wielandt [39].

Lemma 3. Suppose we have C = A + B. Here, all these matrices are symmetric and have order n. Suppose they
have the eigenvalues αi, βi, and γi, where 1 ≤ i ≤ n, respectively arranged in non-increasing order. Therefore,
∑n

i=1(γi − αi)
2 ≤ ∑n

i=1 β2
i .

The following gives relation between generalized distance spectrum and distance spectrum for a
simple connected graph G. We use [n] to denote the set of {1, 2, . . . , n}. For each subset S of [n], we use
Sc to denote [n]− S.

Theorem 6. Let G be a connected graph of order n and let µ1, . . . , µn be the eigenvalues of the distance matrix
of G. Then for each non-empty subset S = {r1, r2, . . . , rk} of [n], we have the following inequalities:

2kαW(G)−
√

k(n− k)
(
n ∑n

i=1 α2Tr2
i − 4α2W2(G)

)
n

≤ ∑
i∈S

(∂i + (α− 1)µi)

≤
2kαW(G) +

√
k(n− k)

(
n ∑n

i=1 α2Tr2
i − 4α2W2(G)

)
n

.

Proof. Since Dα(G) = αTr(G) + (1− α)D(G), then by the fact that 2αW(G) = ∑n
i=1(∂i + (α− 1)µi),

we get 2αW(G)−∑i∈S(∂i + (α− 1)µi) = ∑i∈SC (∂i + (α− 1)µi). By Cauchy-Schwarz inequality, we
further have that(

2αW(G)−∑
i∈S

(∂i + (α− 1)µi)

)2

≤ ∑
i∈SC

12 ∑
i∈SC

(∂i + (α− 1)µi)
2.

Therefore (
2αW(G)−∑

i∈S
(∂i + (α− 1)µi)

)2

≤ (n− k)

(
n

∑
i=1

(∂i + (α− 1)µi)
2 −∑

i∈S
(∂i + (α− 1)µi)

2

)
.
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By Lemma 3, we have that(
2αW(G)−∑

i∈S
(∂i + (α− 1)µi)

)2

+ (n− k) ∑
i∈S

(∂i + (α− 1)µi)
2

≤ (n− k)
n

∑
i=1

(∂i + (α− 1)µi)
2 ≤ (n− k)

n

∑
i=1

α2Tr2
i .

Again by Cauchy-Schwarz inequality, we have that

(
n− k

k

)(
∑
i∈S

(∂i + (α− 1)µi)

)2

=

(
∑
i∈S

√
n− k

k
(∂i + (α− 1)µi)

)2

≤ ∑
i∈S

(
n− k

k

)
∑
i∈S

(∂i + (α− 1)µi)
2 = (n− k) ∑

i∈S
(∂i + (α− 1)µi)

2.

Therefore, we have the following inequality(
2αW(G)−∑

i∈S
(∂i + (α− 1)µi)

)2

+

(
n− k

k

)(
∑
i∈S

(∂i + (α− 1)µi)

)2

≤ (n− k)
n

∑
i=1

α2Tr2
i .

Solving the quadratic inequality for ∑i∈S(∂i + (α− 1)µi), so we complete the proof.

Notice that ∑n
i=1(∂i − αTri) = 0 and by Lemma 3, we also have ∑n

i=1(∂i − αTri)
2 ≤ (1 −

α)2 ∑n
i=1 µ2

i = 2(1− α)2 ∑n
1≤i<j≤n d2

ij. We can similarly prove the following theorem.

Theorem 7. Let G be a connected graph of order n. Then for each non-empty subset S = {r1, r2, . . . , rk} of [n],
we have: ∣∣∣∣∣∑i∈S

(∂i − αTri)

∣∣∣∣∣ ≤
√

2k(n− k)(1− α)2 ∑1≤i<j≤n d2
ij

n
.

We conclude by giving the following bounds for the k-th largest generalized distance eigenvalue
of a graph.

Theorem 8. Assume G is connected and is of order n. Suppose it has diameter d and δ is its minimum degree.
Let

ϕ(G) = min
{

n2(n− 1)
(

α2n2(n− 1)
4

+ (1− α)2d2
)
− 4α2W2(G),

n

(
α2
(

nd− d(d− 1)
2

− 1− δ(d− 1)
)2

+ (1− α)2n(n− 1)d2

)
− 4α2W2(G)

}
.

Then for k = 1, . . . , n,

1
n

{
2αW(G)−

√
k− 1

n− k + 1
ϕ(G)

}
≤ ∂k(G) ≤ 1

n

{
2αW(G) +

√
n− k

k
ϕ(G)

}
. (13)
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Proof. First we prove the upper bound. It is clear that

trace(D2
α(G)) =

k

∑
i=1

∂2
i +

n

∑
i=k+1

∂2
i ≥

(∑k
i=1 ∂i)

2

k
+

(∑n
i=k+1 ∂i)

2

n− k
.

Let Mk = ∑k
i=1 ∂i. Then

trace(D2
α(G)) ≥

M2
k

k
+

(2αW(G)−Mk)
2

n− k
,

which implies

∂k(G) ≤ Mk
k
≤ 1

n

{
2αW(G) +

√
n− k

k
[n · trace(D2

α(G))− 4α2W2(G)]

}
.

We observe that

n · trace(D2
α(G))− 4α2W2(G) = nα2

n

∑
i=1

Tr2
i + 2n(1− α)2 ∑

1≤i<j≤n
(dij)

2 − 4α2W2(G)

≤ nα2 n3(n− 1)2

4
+ 2n(1− α)2 n(n− 1)

2
d2 − 4α2W2(G)

= n2(n− 1)
(

α2n2(n− 1)
4

+ (1− α)2d2
)
− 4α2W2(G),

since Tri ≤ n(n−1)
2 , and

n · trace(D2
α(G))− 4α2W2(G)

= nα2
n

∑
i=1

Tr2
i + 2n(1− α)2 ∑

1≤i<j≤n
(dij)

2 − 4α2W2(G)

≤ nα2
(

nd− d(d− 1)
2

− 1− δ(d− 1)
)2

+ 2n(1− α)2 n(n− 1)
2

d2 − 4α2W2(G)

= n

(
α2
(

nd− d(d− 1)
2

− 1− δ(d− 1)
)2

+ (1− α)2n(n− 1)d2

)
− 4α2W2(G),

since Tri ≤ nd− d(d−1)
2 − 1− di(d− 1). Hence, we get the right-hand side of the inequality (13).

Now, we prove the lower bound. Let Nk = ∑n
i=k ∂i. Then we have

trace(D2
α(G)) =

k−1

∑
i=1

∂2
i +

n

∑
i=k

∂2
i ≥

(
∑k−1

i=1 ∂i

)2

k− 1
+

(
∑n

i=k ∂i

)2

n− k + 1

=
(2αW(G)− Nk)

2

k− 1
+

N2
k

n− k + 1
.

Hence

∂k(G) ≥ Nk
n− k + 1

≥ 1
n

{
2αW(G)−

√
k− 1

n− k + 1
[n · trace(D2

α(G))− 4α2W2(G)]

}
,

and we get the left-hand side of the inequality (13).

By a chemical tree, we mean a tree which has all vertices of degree less than or equal to 4.
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Example 3. In Figure 1, we depicted a chemical tree of order n = 5.

Figure 1. A chemical tree T.

The distance matrix of T is

D(T) =


0 1 2 3 3
1 0 1 2 2
2 1 0 1 1
3 2 1 0 2
3 2 1 2 0

 .

Let µ1, . . . , µ5 be the distance eigenvalues of the tree T. Then one can easily see that µ1 = 7.46, µ2 = −0.51,
µ3 = −1.08, µ4 = −2 and µ5 = −3.86. Note that, as D0(T) = D(T), taking α = 0 in Theorem 8, then for

n = 5 we get−6
√

k−1
6−k ≤ µk ≤ 6

√
5−k

k , for any 1 ≤ k ≤ 5. For example,−6 ≤ µ1 ≤ 12 and−3 ≤ µ2 ≤ 7.3.

4. Conclusions

Motivated by an article entitled “Merging the A- and Q-spectral theories” by V. Nikiforov [33],
recently, Cui et al. [15] dealt with the integration of spectra of distance matrix and distance signless
Laplacian through elegant convex combinations accommodating vertex transmissions as well as
distance matrix. For α ∈ [0, 1], the generalized distance matrix is known as Dα(G) = αTr(G) + (1−
α)D(G). Our results shed light on some properties of Dα(G) and contribute to establishing new
inequalities (such as lower and upper bounds) connecting varied interesting graph invariants. We
established some bounds for the generalized distance spectral radius for a connected graph using
various identities like the number of vertices n, the diameter, the minimum degree, the second
minimum degree, the transmission degree, the second transmission degree and the parameter α,
improving some bounds recently given in the literature. We also characterized the extremal graphs
attaining these bounds. Notice that the current work mainly focuses to determine some bounds for
the spectral radius (largest eigenvalue) of the generalized distance matrix. It would be interesting to
derive some bounds for other important eigenvalues such as the smallest eigenvalue as well as the
second largest eigenvalue of this matrix.
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20. Cvetković, D.; Simić, S.K. Towards a spectral theory of graphs based on the signless Laplacian III. Appl. Anal.

Discrete Math. 2010, 4, 156–166.
21. Das, K.C.; Aouchiche, M.; Hansen, P. On distance Laplacian and distance signless Laplacian eigenvalues of

graphs. Linear Multilinear Algebra 2019, 67, 2307–2324.
22. Das, K.C.; Aouchiche, M.; Hansen, P. On (distance) Laplacian energy and (distance) signless Laplacian

energy of graphs. Discrete Appl. Math. 2018, 243, 172–185.
23. Diaz, R.C.; Rojo, O. Sharp upper bounds on the distance energies of a graph. Linear Algebra Appl. 2018, 545,

55–75.
24. Duan, X.; Zhou, B. Sharp bounds on the spectral radius of a nonnegative matrix. Linear Algebra Appl. 2013,

439, 2961–2970.
25. Fernandes, R.; de Freitas, M.A.A.; da Silva, C.M., Jr.; Del-Vecchio, R.R. Multiplicities of distance Laplacian

eigenvalues and forbidden subgraphs. Linear Algebra Appl. 2018, 541, 81–93.
26. Li, X.; Fan, Y.; Zha, S. A lower bound for the distance signless Laplacian spectral radius of graphs in terms of

chromatic number. J. Math. Res. Appl. 2014, 34, 289–294.
27. Li, D.; Wang, G.; Meng, J. On the distance signless Laplacian spectral radius of graphs and digraphs. Electr. J.

Linear Algebra 2017, 32, 438–446.
28. Liu, S.; Shu, J. On the largest distance (signless Laplacian) eigenvalue of non-transmission-regular graphs.

Electr. J. Linear Algebra 2018, 34, 459–471.
29. Lu, L.; Huang, Q.; Huang, X. On graphs with distance Laplacian spectral radius of multiplicity n− 3. Linear

Algebra Appl. 2017, 530, 485–499.



Symmetry 2019, 11, 1529 17 of 17

30. Lu, L.; Huang, Q.; Huang, X. On graphs whose smallest distance (signless Laplacian) eigenvalue has large
multiplicity. Linear Multilinear Algebra 2018, 66, 2218–2231.
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