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Abstract

Epidemiological studies indicate that diets rich in fruits and vegetables (F&V) are protective against CVD. Puréed F&V products retain many

beneficial components, including flavonoids, carotenoids, vitamin C and dietary fibres. The present study aimed to establish the physio-

logical effects of acute ingestion of a F&V purée-based drink (FVPD) on vasodilation, antioxidant status, phytochemical bioavailability and

other CVD risk factors. A total of twenty-four subjects, aged 30–70 years, completed the randomised, single-blind, controlled, crossover test

meal study. Subjects consumed 400ml of the FVPD, or a fruit-flavoured sugar-matched control, after following a low-flavonoid diet for 5 d.

Blood and urine samples were collected throughout the study day, and vascular reactivity was assessed at 90min intervals using laser

Doppler iontophoresis. The FVPD significantly increased plasma vitamin C (P¼0·002) and total nitrate/nitrite (P¼0·001) concentrations.

There was a near significant time by treatment effect on ex vivo LDL oxidation (P¼0·068), with a longer lag phase after consuming the

FVPD. During the 6 h after juice consumption, the antioxidant capacity of plasma increased significantly (P¼0·003) and there was a

simultaneous increase in plasma and urinary phenolic metabolites (P,0·05). There were significantly lower glucose and insulin peaks

after ingestion of the FVPD compared with control (P¼0·019 and 0·003) and a trend towards increased endothelium-dependent vasodila-

tion following FVPD consumption (P¼0·061). Overall, FVPD consumption significantly increased plasma vitamin C and total nitrate/nitrite

concentrations, with a trend towards increased endothelium-dependent vasodilation. Puréed F&V products are useful vehicles for increa-

sing micronutrient status, plasma antioxidant capacity and in vivo NO generation, which may contribute to CVD risk reduction.

Key words: Juice: Flavonoids: Vascular reactivity: CVD

Many epidemiological studies have shown that a high

consumption of fruits and vegetables is associated with a

reduced risk of CVD and other chronic diseases(1–3). CVD is

responsible for about half (48%) of all deaths annually in

Europe and is the major cause of death in men and women in

the UK(4). Endothelial dysfunction is a central feature in the

early development of CVD, and impairment of endothelium-

dependent vasodilation has been shown to precede structural

atherosclerotic lesions(5). The vascular endothelium displays

systemic characteristics, which enables non-invasive measure-

ments of peripheral circulation to be used as an indicator of

the condition of the coronary arteries(6). Laser Doppler ima-

ging coupled with iontophoresis (LDI) is one such method

of investigating the vasodilation of the peripheral microvascu-

lature by delivering vasodilator agents across the skin under

the influence of an applied electrical field(7). Acetylcholine is

administered at the anode and tests endothelial function via

its vasodilator action of binding to muscarinic receptors on

endothelial cells, subsequently generating NO via endothelial

NO synthase (eNOS), thereby acting as an ‘endothelium-

dependent’ vasodilator. A NO donor, sodium nitroprusside,

is administered at the cathode and acts as an ‘endothelium-

independent’ vasodilator, which acts as a control to test the

integrity of vascular smooth muscle. Many fruits, vegetables

and their juices contain polyphenolic flavonoid com-

pounds(8,9) that have been shown to increase eNOS activity

in cell and animal studies at physiological concentra-

tions(10–15). In addition, there is a growing body of evidence

that supports the beneficial impact of chronic fruit and vege-

table consumption(16–18) and isolated flavonoids(19,20) on

*Corresponding author: J. A. Lovegrove, fax þ44 118 931 0080, email j.a.lovegrove@reading.ac.uk

Abbreviations: eNOS, endothelial NO synthase; FRAP, ferric-reducing antioxidant power; FVPD, fruit and vegetable purée-based drink; LDI, laser Doppler

iontophoresis.
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improvements in measures of vascular function. However, the

acute in vivo vascular response to fruit and vegetable con-

sumption in human subjects is very limited(21) and has not

been adequately assessed.

Oxidation of LDL has been recognised as an early stage in

the development of atherosclerosis leading to CVD(22–25).

Many studies have reported the antioxidant effects of phyto-

chemicals in fruits and vegetables, which include the

retardation of the susceptibility of LDL to oxidation in vitro

and in vivo (22–24,26). Plant foods contain many components

that could contribute to significant health benefits, including

vitamins, fibre, carotenoids, sulphur compounds, nitrate and

organic acids, as well as a wide variety of phenolic phyto-

chemicals(26–29). Compounds in the latter class may contribute

to benefits by reducing oxidative stress(27), by regulating

enzymes involved in phase 2 metabolism, as well as by

other mechanisms. The beneficial components listed earlier

are also retained in many fruit and vegetable juices and

purée products(30–32). Research has shown that fruit and vege-

table juices also have a protective effect against CVD risk(17,33).

In the UK, the average adult consumes less than the recom-

mended minimum of five 80 g portions of fruits and vegetables

per d(34), but there has been a continued increase in fruit

juice and liquidised/puréed product consumption in the

UK(35), and these products represent an important source of

micronutrients. The aim of the present study was to investigate

the acute effects of the consumption of a concentrated

fruit and vegetable purée-based drink on vascular function,

antioxidant status and plasma concentrations of beneficial

phytochemicals and vitamin C, which could contribute to a

reduction in the risk of chronic diseases, such as CVD.

Experimental methods

Study population

A total of twenty-four subjects (twenty males and four

females), aged between 30 and 70 years, completed the

study. The subjects were recruited from the University of

Reading and general public around the Reading area, and

were selected if they met the study criteria of no known

liver disease, diabetes mellitus or a diagnosed mycocardial

infarction; no gall bladder problems or abnormalities of

fat metabolism; no subjects on weight-reducing diets or

taking dietary supplements; no vigorous exercise or excess

consumption of alcohol; BMI ,30 kg/m2; blood pressure

,150/90mmHg and Hb .125 g/l. All study subjects had

basic anthropometric measurements recorded, and fasting

blood was taken and analysed for liver function status,

lipid levels, fasting glucose and a measure of potential alcohol

abuse. A total of twenty-five subjects were required to be

recruited to detect a 10% difference in acetylcholine vaso-

dilatory response measured by LDI based on the present

data for intra-subject reproducibility response (within-day

and between-day variation, both 12%), with P,0·05, 80%

power and an allowance for a 10% drop-out. The present

study was conducted according to the guidelines laid down

in the Declaration of Helsinki, and all procedures involving

human subjects were assessed by the University of Reading

Research Ethics Committee who gave a favourable ethical

opinion for conduct. Each subject gave written informed con-

sent before participating. The registration number for clinical

trials is ISRCTN36287115.

Study design

The study was a randomised, single-blind, controlled, cross-

over, acute postprandial test meal study. The subjects were

randomly assigned to either the fruit and vegetable purée-

based drink (FVPD) or the control drink. The subjects con-

sumed a low-flavonoid diet for a 5 d period preceding the

study day. On the study day, a flexible cannula was inserted

into the forearm and blood samples taken at baseline and

at twelve additional time points after consumption of the

relevant drink, eight samples 30min apart followed by four

samples 1 h apart. Urine was collected before the drink was

consumed and then at 2 h intervals for 8 h of the study day.

LDI was used to record a real-time measure of vascular reac-

tivity for two baseline measurements and five measurements

following drink consumption, all at 90min intervals. The

whole procedure was repeated with the other intervention

drink after a 4-week washout.

Intervention drinks

Subjects were asked to consume 400ml FVPD (Vie Shots; Uni-

lever Bestfoods) or 400ml fruit-flavoured cordial (Robinsons

Lemon Barley Water; Robinsons Limited), which was matched

for sugar composition and diluted with low-nitrate mineral

water (The Buxton Mineral Water Company Limited). The

FVPD was a fruit and vegetable drink made from 800 g

fruit and vegetables in the form of concentrated juices and

purées, which was composed of apple (56%), carrot (29%)

and strawberry (8%). The nutrient composition of the drinks

is shown in Table 1.

Fruit and vegetable purée-based drink antioxidant
components

FVPD extracts were prepared by extraction with acidified

methanol(36). Total phenolic compounds were determined

by the Folin–Ciocalteu method(37), and flavonoid content

and composition were determined by HPLC(24). The poly-

phenol content of the FVPD was determined by the

method of Garcia-Macias et al.(38). Aqueous antioxidant

activity was assessed by the oxygen radical absorbance

capacity method(39). A volume of FVPD extract containing

0·5mM-gallic acid equivalents, determined by the Folin–

Ciocalteu method, was incubated with isolated LDL containing

100mg protein in the assay.

Anthropometric measurements

Measurements of height, weight, BMI and blood pressure

were recorded at the start of each of the two study days.

Fruit and vegetable drinks and vasodilation 1443
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Plasma collection and analysis

Blood samples were collected via syringe from a cannula and

transferred to citrate, EDTA and lithium heparin vacutainer

tubes. The tubes were immediately wrapped in foil and kept

on ice for transport to the laboratory. Following centrifugation

at 48C at 3000 rpm, plasma was aliquotted into separate cryo-

genic vials for storage at 2808C. Analysis did not commence

until the intervention study was completed, and all samples

from each subject were analysed within one batch to reduce

inter-batch variation.

Analyses of plasma TAG, total and HDL-cholesterol, NEFA

and glucose were performed using an Instrument Laboratory

ILAB 600 autoanalyser and standard kits (Instrumental Labo-

ratories Limited). Appropriate sero-normal, low and high

quality control standards (Instrument Laboratories Limited)

were included in all batches. Insulin was assessed by ELISA

(Dako Cytomation; Ely) with in-house pooled plasma controls

in each batch.

Plasma samples for ascorbic and uric acid analysis were

treated with 5% metaphosphoric acid (1:1, v/v) and stored

at 2808C prior to analysis by HPLC with UV detection(40,41).

Total nitrate/nitrite was measured using an ELISA kit (Active

Motif; Rixensart) based on the Greiss reaction(42) in plasma,

FVPD and the control drink.

The ferric-reducing antioxidant power (FRAP) of plasma

was determined using the method of Benzie & Strain(43),

adapted for use with ninety-six-well microtitre plates(44).

A Genios spectrophotometer (Tecan Limited) was used to

measure the absorbance at 593 nm. This method was used

to estimate aqueous antioxidants. The method for LDL iso-

lation and assessment of oxidative stability was based on that

of Leigh-Firbank et al.(45). Concentrations of 50mg of LDL

protein/ml and 5mM-CuSO4 were used for oxidation at pH

7·4. The formation of conjugated dienes (the breakdown

products of lipid peroxidation) was monitored at 234 nm,

378C every 2min for 3 h using a Perkin-Elmer Lambda bio

20 UV/VIS Spectrometer(46).

Plasma (300ml) was extracted four times with 0·5ml of ethyl

acetate by vortexing for 1min after addition of 100ml of

5M-HCl. The mixture was then centrifuged at 13 200 rpm for

10min, and the top layer removed. The ethyl acetate extracts

were dried and derivatised by the addition of 200ml of

N,O-bis(trimethylsilyl) trifluoroacetamide þ trimethylchlorosilane

and heated at 708C for 4 h(47). An Agilent Technologies Model

GC 6890N (G1530N) gas chromatograph coupled with an

Agilent 5975 series Inert XL mass selective detector and a

CTC analysis system autosampler were used for analyses.

Samples (2·0ml) were analysed on a 30m, 0·25mm inner

diameter, 0·50mm, DB-5-fused silica capillary column (Agilent

Technologies), with temperature programming from 808C

(1min) increasing up to 2208C at a rate of 108C/min and

from 220 to 3108C at a rate of 108C/min and held for 6min.

Electron-impact mass spectra were recorded with ionisation

energy of 70 eV. o-Phthalic acid was used as an internal

standard.

Urinary creatinine, hippuric and phenolic acids

Analysis of urinary creatinine was performed using an Instru-

ment Laboratory ILAB 600 autoanalyser. Urinary hippuric acid

was measured as an indicator of polyphenol metabolism(48)

and determined by the extraction method of Mohsen et al.(49)

and analysed by HPLC by adapting the methods of Felgines

et al.(50) and Kay et al.(51).

Laser Doppler imaging with iontophoresis

Subjects were in a supine position, in a quiet room at an

ambient temperature of 22 ^ 18C for all measures. Two

ION6 Perspex chambers (Moor Instruments Limited) with an

internal platinum wire electrode were placed on the volar

aspect of the forearm and attached to the skin using adhesive

discs (MIC-1AD; Moor Instruments Limited) and connected to

a MIC2 iontophoresis controller (Moor Instruments Limited).

Skin temperature was recorded at the time of measurement.

Acetylcholine chloride (2·5ml, 1%; Sigma-Aldrich) in 0·5%

NaCl solution was placed in the anodal chamber and 2·5ml

of 1% sodium nitroprusside (Sigma-Aldrich) in 0·5% NaCl

solution was placed in the cathodal chamber. Circular glass

coverslips were placed over each chamber to prevent loss of

solutions. Current delivery was controlled by laser Doppler

imager Windows software 5.1 (Moor Instruments Limited).

Measurement of skin perfusion was carried out using a

moorLDI2-IR laser Doppler imager (Moor Instruments Lim-

ited). The scanner head was positioned 30 cm above the

chambers. The laser light was directed by a moving mirror

in a raster fashion over both chambers. A total of ten repeat

scans were taken, the first with no current to act as a control,

then two scans at 10mA, two at 20mA, two at 30mA and one at

40mA to give a total charge of 8mC, the final two scans

were measured without any current. The area under the flux

Table 1. Nutrient composition of fruit and vegetable purée-based drink

(FVPD) and control drink*

FVPD

(400ml)

Control

(400ml)

Energy

kcal 252 203

kJ 1054 849

Protein (g) 4·0 0·3

Carbohydrate (g) 54·4 50·4

Of which sugar (g) 50·4 50·4

Fat (g) 2·0 Trace

Of which saturates (g) 0·4 Trace

Fibre (g) 6·0 –

Na (g) 0·12 –

Ascorbic acid (mg) 120 –

Nitrate/nitrite (mg) 1·0 0·0

Total carotenoids (mg) 20·4 –

Total phenolics (mg GAE) 768 44

Caffeic acid (mg) 60 –

Ferulic acid (mg) 16 –

Epicatechin (mg) 457 –

Chlorogenic acid (mg) 31 –

Cyanidin (mg) 53 –

Pelargonidin-3-glucoside (mg) 37 –

Pelargonidin (mg) 11 –

GAE, gallic acid equivalents.

* Adapted from George et al.(65)
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v. time curve over the ten scans was deemed to indicate the

microvascular response.

Statistical analyses

All statistical analyses were performed using SPSS 13.0 for

Microsoft Windows (SPSS Inc.). The data were checked

for normality using the Shapiro–Wilk test, as the number of

subjects was less than fifty. Those data that were not normally-

distributed were log transformed and reassessed. A repeated-

measures ANOVA was used to detect significant differences

between treatment groups with Bonferroni correction to

reduce the likelihood of chance findings from multiple com-

parisons. A value of P # 0·050 was used to define significance

and a 95% CI. The data presented in tables and graphs

are displayed as means with their standard errors, unless

otherwise stated.

Results

Antioxidant components of fruit and vegetable purée-
based drink

The antioxidant components of the FVPD are listed in Table 1.

The FVPD contained a high concentration of flavonoids, with

400ml of the FVPD supplying 768mg of total phenolics (gallic

acid equivalents) including 100mg of anthocyanins. The con-

trol drink contained only 44mg of total phenolics (gallic acid

equivalents) with no anthocyanins. The FVPD had a high

antioxidant capacity when assessed by the oxygen radical

absorbance capacity assay (6702mM Trolox equivalents).

Anthropometric data

The baseline anthropometric data for the subjects are shown

in Table 2. There was no change in weight, BMI or blood

pressure between study days (data not shown).

Biochemical data

There was a significant time by treatment effect (P,0·001) and

a significant increase in plasma ascorbic acid concentration

following FVPD consumption at all time points from 60min

Table 2. Baseline characteristics of subjects in acute fruit and

vegetable purée-based drink consumption study

(Mean values and standard deviations)

Males (n 20) Females (n 4)

Mean SD Mean SD

Age (years) 46 11 49 4

Weight (kg) 79·9 10·4 66·7 7·9

BMI (kg/m2) 25·6 3·2 24·0 2·6

Systolic BP (mmHg) 125 12 106 12

Diastolic BP (mmHg) 79 7 71 7

Glucose (mmol/l) 5·0 0·3 4·9 0·1

Total cholesterol (mmol/l) 5·3 0·9 4·5 0·8

TAG (mmol/l) 1·4 0·9 0·8 0·2

BP, blood pressure.
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after ingestion, reaching a maximum value approximately

120min after consumption. The plasma uric acid concen-

tration did not change significantly (Table 3). There was a

significant increase in oxidative stability determined by the

FRAP assay after FVPD consumption, as shown in Fig. 1

(time by treatment, P¼0·030). The peak FRAP response

occurred 60min after FVPD consumption (P¼0·003). It was

observed that there was a near significant attenuation in the

reduction in the postprandial LDL oxidation lag phase

response (time by treatment, P¼0·068) after the FVPD com-

pared with the control drink, with a significant difference in

LDL oxidation lag phase between treatments at 60min after

FVPD consumption (P¼0·016; Fig. 2). There was no corre-

lation between the concentration of either plasma vitamin C

or uric acid with plasma antioxidant capacity assessed by

the FRAP and LDL oxidation assays (data not shown).

There was a significant time by treatment interaction

(P¼0·03) in the plasma concentration of salicylic acid, with

a significant increase from 1 to 5 h after FVPD consumption

(Table 4, P,0·0001). Plasma benzoic acid concentration

tended to increase at 2 h after FVPD consumption and

almost reached statistical significance at 6 h (Table 4,

P¼0·07). The benzoic acid concentration in the FVPD group

remained higher than observed after consumption of the

control drink throughout the intervention period. Plasma

p-hydroxyphenylacetic acid and 3-(4-hydroxy phenyl)-2-

hydroxypropanoic acid concentrations remained higher than

the response to the control drink throughout the 8 h inter-

vention period (Table 4). Both compounds peaked 90min

after FVPD consumption, but only p-hydroxyphenylacetic

acid reached a maximum that was significantly higher than

the control (Table 4, P¼0·01). After consuming the FVPD,

the urinary concentration of vanillic acid, p-hydroxybenzoic

acid and ferulic acid remained higher than the control

treatment throughout the intervention period (Fig. 3), the

mean peak concentration occurred after 4 h for vanillic and

p-hydroxybenzoic acid (P,0·001 and 0·04, respectively) as

shown in Fig. 3(a) and (b). Ferulic acid was only found in

urine after subjects consumed the FVPD, and the concen-

tration peaked after 2 h and remained constant until 6 h

before reducing. There was a highly significant time by

treatment effect (P,0·0001) in the plasma concentration of

hippuric acid, with a significant increase from 3 to 8 h after

FVPD consumption only (Table 4). There was also a signifi-

cant time by treatment effect (P¼0·008) in the urinary

excretion of hippuric acid, with a significant increase at 360

and 480min after FVPD consumption (P¼0·0001 and 0·010,

respectively) as shown in Fig. 3(d).

A significant time by treatment effect was observed for the

glucose and insulin response (Table 3, P¼0·019 and 0·003,

respectively), with a significantly lower peak concentration

after consumption of the FVPD compared to the sugar-

matched control (P¼0·004 and 0·029, respectively). There

was no effect of FVPD consumption on plasma TAG, total

or HDL-cholesterol or NEFA (data not shown). There was a

significant time by treatment interaction (P,0·001) and

a significant increase in total plasma nitrate/nitrite concen-

tration following FVPD consumption at all time points after

ingestion (Fig. 4).

Laser Doppler imaging with iontophoresis

The endothelium-dependent vasodilation response to acetyl-

choline is shown in Fig. 5. There was a trend towards

increased vasodilation following FVPD consumption through-

out the day, which almost reached statistical significance

(P¼0·061).

Discussion

The present study is the first to investigate the effects of

an acute ingestion of fruits and vegetables, in the form

of 400ml of a purée-based drink, on vascular reactivity and

plasma and urine phytochemical composition. The FVPD

contained significant levels of vitamin C and polyphenols

12

*10

8

6

P
la

s
m

a
 F

R
A

P
 v

a
lu

e
 (

%
 ∆

 f
ro

m
 b

a
s
e
li
n

e
)

4

2

0
0 60 120 180 240 300 360 420 480

Time after drink consumption (min)
–2

–4

–6

Fig. 1. Ferric-reducing antioxidant potential (FRAP) of plasma (percentage

change from baseline) following acute consumption of fruit and vegetable

purée-based drink (FVPD) or control (n 24). The solid line represents the

effect from FVPD consumption and the dashed line represents the effect

from the control. There was a significant time by treatment effect (P¼0·03).

* Mean values were significantly different for effect between treatments after

post hoc tests.

2

*1

0

–1

L
a
g

 p
h

a
s
e
 f

o
r 

L
D

L
 o

x
id

a
ti

o
n

(%
 ∆

 f
ro

m
 b

a
s
e
li
n

e
)

–2

–4

–3

–5

0 60 120 180 240 300 360 420 480

Time after drink consumption (min)

–6

–7

–8

–9

Fig. 2. LDL lag phase time (percentage change from baseline) following

acute consumption of fruit and vegetable purée-based drink (FVPD) or con-

trol (n 24). The solid line represents the effect from FVPD consumption and

the dashed line represents the effect from the control. There was a near

significant time by treatment effect (P¼0·068). *Mean values were signifi-

cantly different for effect between treatments after post hoc tests.

T. W. George et al.1446

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n



from the fruit sources, including anthocyanins, other flavo-

noids and phenolic acids. The present study is one of a few

studies that have investigated the effect of an acute ingestion

of polyphenol-rich drink on postprandial LDL oxidation.

A major finding of the present study was that the susceptibility

of LDL to oxidation increased throughout the 8 h of the inter-

vention period after subjects fasted overnight and consumed

either the FVPD or control. A fall in the lag phase time in

subjects who had fasted for at least 12 h was also reported

by Hodgson et al.(52), who found that LDL isolated at 60min

after consumption of water or water-containing caffeine had

lag phases that were shorter than the baseline values.

However, the acute consumption of the FVPD significantly

increased the lag phase compared to control after 60min for

all subjects (P¼0·016) and the lag phase remained longer

than control over a 4 h period. The increase in lag phase

cannot be due to carotenoid components, because most of

the increase in plasma carotenoids occurs after more than

2 h(53). There was a significant increase in plasma ascorbic

acid following FVPD consumption, with a maximum concen-

tration reached at 150–180min, indicating that the ascorbic

acid in the FVPD was effectively absorbed. An increase in

plasma oxidative stability, assessed by the FRAP assay from

60 to 180min, suggested that the antioxidant components of

the FVPD, including ascorbic acid and flavonoids, increased

the antioxidant capacity. There was no effect of treatment

on plasma uric acid, which was not surprising as the control

drink was matched for sugar composition, which was necess-

ary as previously it has been shown that fructose increases

plasma uric acid(54). Caccetta et al.(55) found a significant

increase in plasma uric acid over 4 h, with a peak at 60min

after the subjects consumed 350ml of red wine, but wine con-

sumption had no effect on LDL oxidation.

In the present study hippuric acid was the main flavonoid

metabolite found in plasma and urine. The result was com-

parable to previously reported studies, after consumption

of phenolic compounds such as flavanols, quercetin or chloro-

genic acid(26,48,56,57). When these compounds reach the colon,

they can be converted to valerolactone and then to phenolic

acids by the action of gut microflora, which are then con-

verted to benzoic acid by b oxidation in the liver and benzoic

acid is conjugated with glycine to form N-benzoylglycine

or hippuric acid, which can be absorbed or excreted in

urine(48,56). Valentova et al.(57) observed that after subjects

consumed 1200mg of dried cranberry juice/d for 8 weeks

(estimated daily intake of 35mg total phenolics), the major

metabolite found in the urine was hippuric acid, which was

present at a significantly higher concentration than the control.

Additionally, the serum levels of advanced protein oxidation

products were decreased at the end of the intervention.

However, in contrast, no correlation between plasma/urinary

hippuric acid and plasma antioxidant status was observed in

the present study (data not shown). Hippuric acid has no

antioxidant activity, due to the absence of a phenolic hydroxyl

group in the molecule. In support of this, no correlation was

observed between flavonoid metabolites in plasma and

urine with antioxidant status after consumption of the FVPD.
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the FRAP assay peaked at 60min after consumption of the

FVPD. The increase in oxidative stability at 60min is expected

to be mainly due to the protection of LDL by the increased

plasma vitamin C concentration prior to isolation of the LDL.

Hippuric acid reaching a peak at 5 and 6 h in plasma and

urine, respectively. The delayed appearance of hippuric acid

reflected the fact that this compound was formed in the

colon due to bacterial metabolism and subsequently absorbed

and excreted in the plasma and urine, respectively(26,48,56,57).

Epicatechin was the major flavonoid detected in the FVPD,

followed by anthocyanins and caffeic acid (Table 1). However,

apart from hippuric acid, which is the major metabolite of

flavanols and hydroxycinnamates, other metabolites such as

glucuronides, sulphates and o-methylates, in addition to

anthocyanins, were not detected in the plasma or urine

samples. The major metabolites detected were phenolic

acids. These are secondary metabolites derived from the

biotransformation of colonic microflora. The method used to

analyse plasma was relatively insensitive in detecting intact

flavonoid derivatives.

Several studies have investigated the effect of acute con-

sumption of foods on Cu-catalysed LDL oxidation. Natella

et al.(58) reported that acute consumption of a cup of coffee

significantly reduced the susceptibility of LDL to oxidation

by increasing the lag phase of LDL isolated from blood

removed at 30 and 60min after consumption. Hodgson

et al.(52) found no significant effect of the acute consumption

of green tea, black tea and water containing 180mg caffeine

on LDL oxidation lag phase and total antioxidant capacity of
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samples isolated 60min after consumption. Miyagi et al.(59)

reported that acute consumption of red wine containing

433mg of total phenolics caused a significant increase in the

lag phase time of samples isolated 1 and 2 h after consump-

tion. However, consumption of red grape juice containing

511mg of total phenolics had no effect. Caccetta et al.(55)

reported findings that contradict the latter study, with no

effect on the susceptibility of LDL to oxidation after acute con-

sumption of red wine containing 700mg of total polyphenols.

Another postprandial study investigated the effect of consum-

ing olive oil containing 2·7, 164 and 366mg/kg of phenolic

compounds on LDL oxidation. The results showed that only

the consumption of 366mg/kg olive oil had an effect, retard-

ing LDL oxidation by 9·5 and 15·2% in LDL isolated from

blood removed 2 and 6 h, respectively, after consumption of

olive oil(60). Consequently, the effect of polyphenol-rich

foods on the susceptibility of LDL to oxidation in acute inter-

ventions depends on the nature and amount of polyphenols in

the food, as well as on other variables. The fall in oxidative

stability of LDL isolated from both test and control groups

after baseline may be due to the effects of fasting. However,

absorption or formation of flavonoid metabolites in the

plasma of subjects may be the reason for the increase in

plasma antioxidant capacity due to the FVPD.

The present study also found that there was a significantly

lower glucose and insulin peak concentration after consump-

tion of the FVPD compared to the sugar-matched control. As

the FVPD contained a mixture of purées and concentrated

juices, this may have been due to the matrices of the fruit

and vegetable particles slowing down the absorption of the

sugars, whereas the sugars in the control drink were dissolved

in mineral water. This highlights an additional benefit to

puréed fruits and vegetables over juices that contain minimal

food matrix components. There was a significant increase in

total plasma nitrate and nitrite following FVPD consumption.

The control drink was specifically diluted with Buxton mineral

water that had the lowest nitrate content of all commercially

available mineral waters. This was chosen to reduce any

confounding effects of nitrate in the control, affecting

vasodilation measured by LDI. Although the FVPD contained

a minimal concentration of nitrate/nitrite from the fruits and

vegetables (1·0mg in 400ml), the plasma concentrations of

nitrate/nitrite at each time point after consumption of the

FVPD were significantly higher than the expected concen-

tration provided by the drink. The increase in plasma

nitrate/nitrite was maintained throughout the day, whereas

research has shown that the plasma nitrate concentration

from the ingestion of dietary sources reaches a peak after

approximately 60min and then declines(28,61). Therefore, the

increase in nitrate/nitrite following FVPD consumption could

be due to flavonoid components within the drink increasing

eNOS activity. In vitro studies have shown that flavo-

noids(10–12) at physiological concentrations(13) can increase

eNOS gene expression. The FVPD was particularly rich in

(2)-epicatechin (457mg/400ml) and this compound has

been shown to increase eNOS activity(14,15) and endo-

thelium-1 release(15). In support of these findings, acute con-

sumption of epicatechin-rich apples and grapes (consumed

as champagne) have been associated with beneficial effects

on postprandial NO status and on in vivo vasodilation

measured by LDI(62) and flow-mediated dilation(21) in random-

ised control human studies. In addition, increased plasma NO

and increased vasodilation have been reported after chronic

consumption of fruits and vegetables, which may be due in

part to flavonoids and/or other bioactive components(16–18).

The significant increase in urinary hippuric acid at 360 and

480min indicated that the flavonoid components of the

FVPD were absorbed with metabolism into hippuric acid,

which is a metabolite of several polyphenol compounds(48,56).

The novel LDI results were encouraging. There was a

trend towards increased endothelium-dependent vasodilation

following ingestion of the FVPD compared to the control

drink. The initial increase could be due to flavonoid

components present in the FVPD increasing eNOS activity

by scavenging superoxide(14), which may explain the increase

in total plasma nitrate and nitrite found after FVPD consump-

tion. The largest increase in vasodilation was observed at

approximately 7·5 h after FVPD consumption, which could

be attributed, at least in part, to methylated flavonoid metab-

olites from the small intestine(63). These metabolites have

been shown to have an even greater ability to increase

eNOS activity compared with the parent molecules by inhibit-

ing endothelial NADPH oxidase, thereby reducing superoxide

production(64). There was no effect of the FVPD on plasma

TAG, total and HDL-cholesterol or NEFA, but this was not

unexpected as no fat meal had been given with the drinks.

Overall, the present study provides evidence that consump-

tion of fruits and vegetables in the form of purée-based drinks

acutely increases plasma ascorbic acid, total plasma nitrate

and nitrite concentrations, oxidative stability of plasma

assessed by the FRAP and ex vivo Cu-catalysed LDL oxidation.

Increased concentrations of phenolic metabolites were

detected in plasma and urine after consumption of the

FVPD, and it was concluded that the increase in the oxidative

stability of LDL and antioxidant capacity of plasma could

be due to components in the FVPD such as phenolic acids,

flavonoids and their metabolites. There was a trend towards

0 60 120 180 240 300 360 420 480

Time after drink consumption (min)

250

200

150

100

50

0

–50E
n

d
o

th
e
li

u
m

-d
e
p

e
n

d
e
n

t 
v
a
s
o

d
il

a
ti

o
n

 (
%

 ∆
 f

ro
m

 b
a
s
e
li
n

e
)

Fig. 5. Endothelium-dependent vasodilation in response to acetylcholine

(percentage change from baseline) following acute consumption of fruit and

vegetable purée-based drink (FVPD) or control (n 24). The solid line rep-

resents the values after FVPD consumption and the dashed lines represent

the values for the control.
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increased endothelium-dependent vasodilation following

FVPD consumption, which may be due to increased eNOS

activity or increased NO sparing indicated by the increased

plasma nitrate and nitrite. Purée-based fruit and vegetable

drinks are suitable vehicles for micronutrient and phytochem-

ical ingestion, which may contribute to CVD risk reduction.
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