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Abstract 

The work reported in this paper is a numerical study of airflow and heat transfer for low turbulence buoyancy-driven flow in a 

rectangular cavity partially filled with solid objects. The two vertical walls were maintained at constant temperatures giving a 

temperature differential of 42.2 °C resulting in a characteristic Rayleigh number of 1.45×109. Two different types of blockage 

arrangements were considered for analysis, and these consist of In-line and Staggered arrangements of 12×6 and 12×3 objects. In 

all cases, steady state flow and wall heat transfer data at the mid-height and mid-width of the cavity are presented. The flow 

domain displayed a stable core region and the average core temperature was found to be strongly influenced by different stacking 

arrangement of solid objects. In general, the staggered arrangement resulted in lower heat transfer through the surfaces which is 

linked with the suppression of turbulence within the boundary layers close to the surfaces. 

© 2015 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Buoyancy driven heat transfer inside cavities has been the subject of extensive research for the last two decades 

due to the growing demand for detailed quantitative knowledge of the transfer processes and also due to its relevance 

in many practical applications [1, 2]. The basic set up for such flows, which has also attracted most attention from 

researchers, is a rectangular cavity filled with dry air whose opposing vertical walls are heated differentially [3-6]. In 

the case of a rectangular cavity of height H, the natural convection heat transfer from hot to cold walls is 

characterized by the formation of a slow moving vortex. This vortical motion is often interpreted as an ‘engine’ 

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
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which transfers heat from the heated surface (source) to the cold surface (sink). The intensity of flow is conveniently 

expressed by the Rayleigh number, Ra = g TH , where, H is the height of the cavity,  is coefficient of 

thermal expansion, ΔT is the temperature difference between the vertical walls and  and  are the thermal and 

molecular diffusivities of the fluid respectively. Depending on the Rayleigh number the flow can be categorized as 

turbulent or laminar [7-9]. Rayleigh numbers less than 10
8
 indicate a buoyancy-induced laminar flow, with transition 

to turbulence occurring over the range of 10
8
 < Ra< 10

10
 [10]. 

      Another trend in buoyancy driven flow research has been focused on the examination of enclosures partially 

filled with solid products [2, 11]. The flows in such confined spaces develop as a result of temperature gradient 

which is further complicated by the interactive effects of solid products on the airflow and heat transfer. This interest 

has grown due to the relevance in the design of a wide range of practical applications such as thermal management 

of indoor environments, cooling of electronic panels, thermal management of agricultural blockages, stacking of 

items in cold storage etc. Unlike porous media, these obstacles are not in contact with each other but are close 

enough to influence the transfer processes significantly. The majority of studies in this category are concentrated on 

steady state laminar flow of Rayleigh number over the range 10  to 10
8
 [12] investigating the flow induced by 

temperature gradient. Typical examples of studies in this category are the works by Das and Reddy [13], Desrayaud 

and Lauriat [12], and Yoon et al. [14], all of which are limited to steady state two dimensional laminar natural 

convection flow of Rayleigh number ranging from 10
5
 to 10

8
.  

      Work has been done for empty box and box full of isolated solid products but none has been reported for 

isolated solid products arranged in clusters in different parts of the chamber. This may be relevant for storage, design 

and determining the optimum location of clustered heating elements. The aim of this paper is to explore the heat 

transfer and flow field inside a rectangular cavity for different arrangements and stacking of these solid blockages 

and, in particular, to address the influences of in-line and staggered arrangement on the heat transfer, airflow and 

turbulence quantities. To achieve the above aims, a systematic two-dimensional numerical investigation of low 

turbulence natural convection flow and heat transfer in a rectangular confined space containing such isolated solid 

cylindrical objects has been conducted. 

 

Nomenclature 

H height of the cavity (m) 

L  width of the cavity (m) 

x, y displacement in x and y direction 

Nulocal local Nusselt number, (= hL/k) 

Ra Rayleigh number, (= (gβ∆TH
3
) ⁄vα) 

y
+
 non-dimensional wall distance 

LR k-ɛ    Low Reynolds number turbulence model 

 

2. Flow Domain 

In this study, particular emphasis is placed on quantifying the airflow, turbulence quantities and heat transfer due 

to various arrangements of solid objects. The geometrical configurations used in these investigations are shown in 

Fig.1 for 12×6 blockages and are similar to the cavities used in previous investigations [15-17]. As can be seen, the 

objects are stacked as in-line and staggered. The rectangular cavity has an internal dimension of height, H = 1000 

mm and width, L = 500 mm and the cylindrical objects are of diameter 40mm. For this arrangement, the volume 

occupied by the solid objects is about 18.1% of the total cavity. 

Another set of stacking was considered by choosing 12×3 objects for three different cases of staggered 

arrangement as shown in Figs.2. These are identified as Case 1, Case 2 and Case 3. Exactly similar cases were 

considered for in-line stacking and an example of Case 3 is shown in Fig. 2. The volume occupied by blockages for 

12×3 arrangements represents about 9% of enclosure volume. 
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Figure 1: Schematic of the 12 × 6 flow domain arrangement and coordinate system 

 
Figure 2: Schematic of the 12x3 arrangement of blockages for staggered and in-line stacking 

3. Numerical Method 

 Calculations were performed for all test cases using the commercial CFD package of ANSYS FLUENT 14.5 

[18]. Turbulent fluxes of momentum and heat were modelled by low Reynolds number k-ε eddy viscosity model of 

Launder-Sharma with the inclusion of the buoyancy terms in the energy equation. This model has been used for 

greater stability and superior results for blockage flow as reported by Draco et al. [15].  

      Systematic grid dependency tests were carried out for all cases and the final results were obtained with y
+
 ≈ 2.  

It is worthwhile to note that the process of computing a steady-state solution using very fine mesh has been quite 

challenging because of the oscillations associated with higher-order discretization schemes. As a result, a number of 

steps were taken to achieve a steady-state solution.  Initially, low value of Rayleigh number (10
6
) was adopted for 

the solution using an incompressible unsteady solver with a time step of 0.002s with the first-order scheme for 
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convection terms. The resulting data files for the three cases were then used as an initial guess for the higher 

Rayleigh number simulation using the higher-order discretization schemes. This method helped to create a more 

realistic initial field for the LR k-ɛ runs. All simulations were performed using a single Intel core 2Duo E6600 2.4 

GHZ processor and a typical run took about 0.5 hours of computing time. 

      Zero heat flux (W/m²) was used as the boundary condition for the passive horizontal walls, while the active vertical 

walls were maintained at 65.5 ᴼC and 23.3 ᴼC for the hot and cold walls respectively. At the surface of the cylinders, 

zero heat flux (adiabatic surface temperature) was used as the thermal boundary condition. However, radiation heat 

transfer between the surfaces was taken into consideration. No slip boundary conditions have been imposed for all the 

solid surfaces. All walls have a fixed emissivity of 0.09, except for the blockages whose emissivity was fixed at 0.9. 

Thermal properties of the air were estimated at the mean temperature of the isothermal walls of the rectangular enclosure 

(44.4 ᴼC). Boussinesq approximation was used to specify air density variation due to temperature [19]. The relative 

variation of density is less than 3% inside the enclosure. To simulate radiation, Discrete Ordinate Method (ANSYS, 

2013) has been chosen.  

4. Results and Discussion 

 The numerical results and analyses are presented in this section. At steady state, heat transfer and flow parameters 

such as the temperature, velocity and turbulence profiles along the mid-height (y/H=0.5) and mid-width (x/L=0.5) were 

collected and analysed. For all cases, temperature data for the mid-height and mid-width displays a stable core region 

and hence emphasis is placed on profiles near the walls. The numerical results using the current methodology has already 

been thoroughly scrutinised and validated against reliable experimental data [17, 18] and hence excluded from this 

paper. 

 

4.1. The 12×6 arrangements 

The influence of staggered arrangement of blockages on the flow and heat transfer is analysed by comparing the 

results with in-line arrangements.  Figure 3 shows the temperature profile at mid-width and near the bottom part of 

the cavity. A nearly similar pattern is observed for the top part and hence is omitted to avoid repetition. The change 

in temperature between the two configurations is significant especially near the passive horizontal walls, with a 

maximum of about 2.5 ᴼC and is found to occur within the boundary layer. The effect due to staggering is more 

prominent up to y/H=0.15 after which a stable core region can be seen. The turbulence intensity for the two 

configurations is shown in Fig. 4. It can be observed that the effect is very prominent on turbulence intensity. The 

average Nusselt number for the two configurations presented in Table 1 shows that the staggering reduces the heat 

transfer by a modest 7%. 

 

Figure 3: Near bottom wall temperature profile at 

mid-width 

 

 

Figure 4: Turbulence intensity profiles at mid-height 
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Table 1: Average Nusselt number comparison 

 Average Nusselt number (12×6) 

 In-line  Staggered stacking 

Hot wall 75.30 69.57 

Cold wall 73.99 68.38 

 

4.2. The 12×3 arrangements 

The results for the in-line and staggered 12×3 arrangement of blockages are presented in this section. For both 

arrangements, three different cases have been considered as shown in Fig. 2. Firstly, results are presented for in-line 

stacking and secondly, the effects due to staggering are specifically addressed by suitable plots. 

 

4.2.1. In-line stacking arrangement 

Figures 5 show the temperature profiles at mid-height of the cavity, with Case 3 showing the maximum 

temperature. The average temperature difference between Case 3 and Case 1 is about 2.4 ᴼC for the most part of the 

mid-height plane. Similar plot in Fig.6 shows the turbulence intensity profiles highlighting the fact that the 

proximity of blockages is closely linked to the suppression of turbulence and is also in conformity with the heat 

transfer through the active walls as presented in Table 2. It is hence reasonable to imply that the different stacking of 

blockages within an enclosed space can lead to a significant change in the heat transfer, and in our case, the average 

change in heat transfer is about 10.5%. 

 

 

Figure 5: Temperature profile at mid-height 

 

Figure 6: Turbulence intensity profile at mid-height 

 

 

 Table 2: Average Nusselt number comparisons (In-line stacking) 

 

 Average Nusselt number  (12×3) 
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Hot wall 78.01 77.80 87.16 

Cold wall 87.47 76.75 77.07 
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4.2.2. Comparison of in-line and stacking 12×3 arrangements 

      In this section, we compare the results for in-line and staggered stacking of 12×3 blockage arrangements. Figure 

7 shows a sample of the flow pattern in the form of a stream function plots for the three different stacking 

conditions. Overall, the flow field is dominated by stacking arrangement with the main fluid motion taking place 

near the walls. As expected, the stacking arrangement of Case 1 and Case 3 shows a diagonally symmetric flow 

pattern. On the other hand, Case 2 displays a rather trapezoidal core region with the higher flow velocities squeezed 

toward the top right hand and bottom left hand corners of the enclosure. 

 

 
Figure 7: Stream function plots for the three cases of stacking conditions. 

Figures 8-9 compare the vertical component of velocity, Vy, and turbulence intensity profiles at the mid-height 

for Cases 2 and 3. For Case 2, the maximum velocity does not show any significant variation due to arrangement. 

However, turbulence intensity shows sensitivity which is similar to the previous situation. For Case 3, the velocity 

magnitude is found to be affected and is due to the very different vortex pattern thanks to the particular stacking 

arrangement. Again, the turbulence intensity can be seen to be drastically reduced due to the staggering of 

blockages. 

 

 
(a) 

 
(b) 

Figure 8: (a) Vertical velocity and (b) turbulence intensity at mid-height for Case 2 
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The relative influence on wall heat transfer in terms of local Nusselt numbers within the enclosure are shown in 

Fig.10. For the case of the blockage stacking near the active vertical walls (Case 3), the in-line configuration shows 

a higher heat transfer as compared to the staggered configuration. It was also calculated that the average heat 

transfer for the staggered arrangements were lower by up to 16% in comparison with the in-line stacking. 

 

 
(a) 

 
(b) 

Figure 9: (a) Vertical velocity and (b) turbulence intensity at mid-height for Case 3 

 
(a) 

 

 
(b) 

Figure 10: Local Nusselt number comparisons at cold wall (a) Case 2 (b) Case 3 

 

5. Conclusion 

  Based on the calculations carried out in this research programme, the numerical results allow a better 

understanding on the influence of blockages arrangement within a low turbulent natural convection flow in an 

enclosure.  The influence on fluid flow and heat transfer for the different stacking of arrangement of the blockages 

within the enclosure was identified and detailed profiles at the mid-height and mid-width of the rectangular 

enclosure have been analyzed. Some general conclusions are presented below:  

a) Temperature stratification was observed in all cases, high temperature at the top and low temperature at the 

bottom region of the enclosure.  

b) The flow in such a low temperature enclosure is sensitive to the different stacking arrangement of products and 

hence a detailed understanding of the flow physics is important for an enhanced design of such applications. 

c) The average heat transfer in the enclosure can be reduced to about 16% due to the pattern of arrangement. The 

stacking pattern was found to affect the flow and heat transfer fairly modestly which is probably dominated by 
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the suppression of turbulence near the walls. The variation of temperature and heat transfer is modest and hence 

may be very important in the design of practical applications where long term exposure is in place. 
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