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ABSTRACT

This thesis addresses the problem of generating executable code fdistributed
embedded systems in which computing nodes communicate usingéhController
Area Network (CAN). CAN is the dominant network in automotive and factory
control systems and is becoming increasingly popular in robotic, meda and
avionics applications. The requirements for functional and temporal eliabil-
ity in these domains are often stringent, and testing alone may not o er the
required level of con dence that systems satisfy their specicatons. Conse-
qguently, there has been considerable research interest in addithal techniques
for reasoning about the behaviour of CAN-based systems. This thesis prases
a novel approach in which system behaviour is speci ed in a high-kel language
that is syntactically similar to Esterel but which is given a formal semantics by
translation to bCANDLE, an asynchronous process calculus. The work devel
oped here shows that bCANDLE systems can be translated automatically, via
a common intermediate net representation, not only into executable Ccode but
also into timed automaton models that can be used in the formal veri cation
of a wide range of functional and temporal properties. A rigorous argument is
presented that, for any system expressed in the high-level languagés timed
automaton model is a conservative approximation of the executable C code
given certain well-de ned assumptions about system components. Itd shown
that an o -the-shelf model-checker (UPPAAL) can be used to verify sydem
properties with a high-level of con dence that those properties wil be exhib-
ited by the executable code. The approach is evaluated by applying ito four
representative case studies. Our results show that, for small to mdium-sized
systems, the generated code is su ciently e cient for execution on typical hard-
ware and the generated timed automaton model is su ciently small for analysis
within reasonable time and memory constraints.
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1. INTRODUCTION AND OVERVIEW

1.1 Embedded System

An embedded system is a computer system that is part of a larger systerto
perform a dedicated function such as monitoring and controlling. We seeuch
computer systems everywhere around us, for example: cell phonespmestic
appliances, medical systems, tra ¢ control systems, and automotive apgica-
tions. Embedded computer systems are becoming more attached to ourfd,
therefore embedded development methods are very important in ordeto en-
sure reliability particularly where a failure may cause loss of lifeor nancial
damage. On June 4, 1996 the Ariane 5 rocket launched by the European Space
Agency exploded just 40 seconds after initiation of the ight sequenc€Dowson,
1997). A software failure was identi ed as a primary cause of the disaster. e
catastrophe was valued at approximately $370 million. More recently, Toyos,
the world's largest automobile manufacturer, announced in 2010 the recall of
thousands of cars because of a problem in a braking system. A software giit
also has been suspected in the braking system. Embedded systemgeeers
need to ensure that the systems which they deliver will behaveorrectly. Tools

and techniques that support that are highly demanded.

1.2 Real-time Embedded System

Mostly, embedded systems are real-time systems. In other wordshey have

real-time constraints where the correctness of their behaviour deends not only
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on the logical results of the computation, but also on the time at which these
results are produced. In a vehicle air-bag example, once a crash igtécted, the
air-bag has to in ate rapidly within a short time. In this example, th e system
should respond to the event of the crash on the correct time in order tgrevent
driver from striking the steering wheel or window. Real-time systems are clas-
si ed into two types depending on how strict are the timing requirements: soft
real-time systems and hard real-time systems (Liu, 2000). A soft real-the sys-
tem has more relaxed timing constraints. The system can continue to oprate
even if it fails to meet its deadline. Examples are multimedia appications, tele-
phone switches, and on-line reservation systems. In a hard real-tis system,
if a timing constraint or deadline is not met, errors consequences maoccur
threatening human lives or causing sever damage or nancial loss. Exampde

include safety-critical applications: medical machines, automotiveand avionics.

Consider the simple example shown in Fig. 1.1 (Kopetz, 1997), where theom-
puter performs a single activity. The system controls the ow of a liquid through
a pipe. For a given set-point, the computer system must maintain the ow of
the liquid despite changing environmental conditions, such as varyig level of
the liquid in the vessel or temperature sensitive viscosity of tle liquid. The
computer system continuously observes the rate of ow, using the av sensor,
and adjusts the control valve accordingly. The response to a change in the
ow must occur within a nite period of time in order to prevent an overload
situation. This however may require complex calculation in order toobtain the
new valve position. Checking that the system meets some functionalqoperties
is necessary, for example: whenever an increase of the ow rate is dited,
the valve is eventually adjusted. However, verifying non-functbnal (or timing)
properties is very important, for example: whenever an increase of th ow
rate is detected, the valve is eventually adjusted beforex time units. Tools and
techniques that provide a prior analysis about the worst-case behawiur of such

systems, are demanded.



1. Introduction and Overview 3

Flow Setpoint

E :{ Computer Control System

Control Valve Flow Sensor

Fig. 1.1: Flow Regulator System.

1.3 Distributed Embedded System

Embedded systems tend to be distributed because of the nature othe envi-
ronment in which they operate. In this case a system may have a numdr of
computing nodes that are interconnected by a communication networkm order
to exchange information for the purpose of monitoring and control. Modern
vehicles may have over a hundred computing units to control, for gample,
air-bag, driver's doors, anti-lock brakes, engine functions and many dter ac-
tivities in the car (Pop et al., 2004). Distribution is required for vari ous reasons
such as performance increase, location of sensors and actuators, and faubler-
ance (Caspi et al., 1999). For instance, consider the example shown in Fiy1.
For a geographical reason, the computing node that reads the ow rate, may b
placed close to the ow sensor and interconnected with a suitable comunica-
tion bus with another computing node that controls the valve. Unfortunat ely,
it is a challenging task to design and implement real-time embeddedystems
in such a way that guarantees that the functional and timing properties are
satis ed under all possible workloads. The problem becomes even hardahen

the system is distributed.

A lot of distributed embedded systems are implemented using Combller Area
Network (CAN). The CAN is the dominant network in automotive and factory
control systems and is becoming increasingly popular in robotic, meda and

avionics applications. In the following, a brief introduction of the CAN is
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presented.

The Controller Area Network

Controller Area Network (CAN) (Bosch, 1991; ISO-CAN, 1993; Natale et al.,
2012) is a broadcast, message-oriented communication protocol developed origi
nally for the automotive industry by Bosch GmbH in the mid-eighties. CAN was
devised to replace the complex wiring harness in automobiles with &wo-wire
bus, and suited to operate in a harsh electromagnetic environment at @&ns-
mission speeds of up to 1 Mbit/s over short distances. CAN is a multimaster
protocol, any node on the network can send a broadcast message to other nade
The message does not contain the address of the destination node(s), titthas
a unique static number which de nes the priority of the message in he net-
work. CAN implements the carrier-sense, multiple-access (CSMA/@) proto-
col with a deterministic collision avoidance policy. This feature has made CAN
particularly suitable for hard real-time systems which require high reliability.
Currently its use has been expanded to include new application domas, for
example: manufacturing, construction, agriculture and healthcare (Otiz et al.,

2011; Eugenio, 2008; Riti and Pozzi, 1999; Parent and Cassin, 1999).

Control End of Bus
Arbitration Field Field Data Field CRC Field Ack Frame _ Int Idle
s N D[A]|A
o 11 bits N 4 bits 0-8 bytes 15 bits E|C|C| 7 bits 3
IDENTIFIER DLC DATA CRC L |K[K EOF bits
F R|E ol1

Fig. 1.2: CAN Frame - Standard Format.

Messages are transmitted over the CAN network as xed format frames whib
consist of a data eld, a message identier eld and other trailing el ds, see
Fig 1.2. The data eld is between 0 and 8 bytes long. The identier eld is 11
(29) bits in the standard (extended) frame format. The other elds of the frame

are explained in Table 1.1. Additional bits are inserted when a frame is tans-
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Field name [ Purpose

SOF Denotes the start of frame transmission.

ID Represents message identi er.

RTR Remote transmission request.

IDE Identi er for the data which also represents the message
priority.

ro Reserved bit.

DLC Data length code which represents the number of bytes
of data.

DATA Represents message data eld which is between 0 and |8
bytes long.

CRC Cyclic redundancy check.

DEL CRC delimiter.

ACKO ACK slot.

ACK1 ACK delimiter.

EOF End of frame.

Int Inter-frame space.

Tab. 1.1: CAN frame elds.

mitted over the network for synchronisation. This process is calld bit stu ng
that means after ve consecutive equal bits, a complementary bit is hserted
into the bit stream. Bit stung occurs from SOF up to, but not including,
the CRCdelimiter. Stu bits introduce uncertainty to the transmissi on time of
CAN messages. However, the maximum number of stu bits can be calculai
in order to estimate the worst-case transmission time of a CAN message. his

is discussed in detail in section 2.3.4.

The identi er represents the priority of the message which is a nomnegative
integer starting from 0; the smaller the number the higher the priority. When
two or more nodes try to transmit a message, the node with the higher pority
message gains access to the bus. First when the bus is free, a numloémodes
may start to transmit at the same time. Each node rst transmits the m essage
identi er starting from the most signi cant bit, and then it monitors  the bus. In
this mechanism, the bit is classi ed as eitherdominant or recessive The node
can only read a recessive bit if all other nodes write recessive sit otherwise

it reads a dominant bit. The behaviour of the bus in this case is simiar to an



1. Introduction and Overview 6

AND-gate. When a node monitors a bit value that is not the one transmitted

it stops transmission, and behaves as a receiver to the highest priity message,
and then waits until the bus becomes idle again. Therefore, during aritration,

the node with the highest priority message wins and continues to trasmit the
rest of the message. Additionally, the message identi er expressesi¢ type of
the message. Each node may be con gured to accept a subset of messages.
A receiver node performs the acceptance test to the received memge. If the

message is accepted it is stored in a receive bu er, otherwise it igejected.

1.4 Formal Methods

Embedded systems may have high reliability requirements, e.ga mean time to
failure of 10° hours is not unusual. Traditional approaches to testing embed-
ded systems may not alone provide the required con dence in theireliability.

In (Gluck and Holzmann, 2002) two problems are identi ed in conventional
testing in terms of concurrent systems: \limited controllability " and \limited

observability". The rst one means that it is not possible to control the speci cs
of thread interleavings; the second one means that it is very hard to rproduce
the error scenario to identify the root cause. Therefore, nding erors such as
race conditions and deadlock in concurrent software is very challengm using

conventional testing.

However, these approaches can be supplemented by a variety of analytiech-
niques. One such technique is model-checking (Baier and Katoe2008). Model-
checking has proved to be a very e ective method to verify regirements and the
design of concurrent systems and communication protocols. Basically, model-
checking tool accepts an abstract model of the system and a speci caih of
properties of the system. The tool then performs an exhaustive statspace
search to check if the model satis es the given speci cation. A couterexample

(sequence of events or path) is generated if the speci cation is not sited
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by the model. Therefore, by studying the counterexample, the etor may be
discovered and corrected. A major obstacle to the widespread deptment of
model-checking in practice is the state-space explosion problemhe number of
states to be checked in a realistic model of the system may excedbde avail-
able computing resources. Furthermore, model-checking veri & a system model
which is an abstraction of the actual system. Thus the model may exhili a be-
haviour that can not be expressed by the actual implementation of the sgtem.
Despite of these limitations, model-checking can increase the\el of con dence

in a system design.

1.5 Related Work

The problem of real-time system has been subject to exhaustive rearch during
the last few decades. Many approaches have been proposed to ensure that
systems hold some useful properties. The synchronous approach is bdsen
very conservative assumptions on system computations and communicati@n
which make the system di cult to implement particularly when th e system
is distributed. Traditional scheduling analysis has been widely sed by real-
time system engineers. It provides a simple mathematical analysisf system
behaviour. Based on the success of its application to single-processsystems,
the approach has been extended to the distributed applications. Howeer, the
approach requires restrictive assumptions on the system implemeation, and
does not allow system level properties to be checked. Other approhes based
on formal languages have been proposed, but they are mainly limited to uni

processor applications.
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1.5.1 Synchronous Approach

The synchronous languages Esterel (Berry, 2000), Lustre (Halbwachs et al.,
1991) and Signal (LeGuernic et al., 1991) are designed around thgynchrony
hypothesiswhich assumes a system responds to its environment's events i
time (Benveniste et al., 2003). Moreover, all communications betweenhe sys-
tem components are also performed instantaneously. The concept is silar to
the synchronous model of digital circuits. The circuits are descted using gates
that must react during one clock cycle which means conceptually in ero time.
This approach allows one to reason formally about the operations of the sys-
tem (Benveniste and Berry, 1991). Synchronous languages and their compike

are now widely used in industry for automotives, railways, and avioncs.

The Esterel language is suited to the development of control-dominateé&mbed-
ded reactive applications (Potop-Butucaru et al., 2007). An Esterel program
consists of a collection of concurrently running threads which are decribed in
a traditional imperative syntax. The concurrency however is compied away in
order to generate a single-threaded source program that behaves like date
machine at run-time. Many compilers have been developed for Estefesuch as
Esterel Technologies Compiler v7 (Esterel-Tech, 2005), Saxo-RT Comgl (Weil
et al., 2000; Closse et al., 2002), and Columbia Esterel Compiler (Edwards and
Zeng, 2007).

In order to validate the synchronous assumption in realistic applicatons of a
synchronous language, the tool TAXYS (Bertin et al., 2000; Closse et al., 2001)
has been developed. The main goal of TAXYS is to generate a formal model
that captures the temporal behaviour of a real-time application and its external
environment. The formal model is produced in a timed automata form (Alur
and Dill, 1994). Esterel is used as a development language for the application
The KRONOS model checker (Daws et al., 1996) is used to check whethe¢he

program satis es its timing constraints. Although the tool is applied success-
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fully for some applications, for example (Bertin et al., 2001) and (Tripakis and
Yovine, 2001), the approach is limited to a single-task implementation ofa syn-
chronous real-time application running on a single-processor platfornm(Sifakis

et al., 2003).

Generating an executable code from a synchronous language for a distrited ar-
chitecture has been addressed in Next-TTA (Caspi et al., 2003) and COLA (Hakrl
et al., 2008a,b). The approach of Next-TTA translates a high-level control de-
sign of Simulink (MathWorks, 2012) to a SCADE/Lustre program for valida-
tion purpose. Then the implementation is derived for TTA execution layer.
TTA (Time Triggered Architecture) (Kopetz, 1997) supports distribut ed im-
plementations based on a synchronous bus. The TTA conforms with a nota-
tion of global synchronisation and ideally matches the synchronous assumjan.
Although the tool aims to benet from the Lustre model-checker Lesar (Ra-
tel et al., 1991) to check whether the implementation satis es its furctional
and timing properties, the analysis is limited to uni-processor mplementa-
tions (Caspi et al., 2003) because the tool Lesar assumes only this kind of
implementation when its input model is constructed. COLA (Kugele et al.,
2007) is a component language for design and development embedded systems.
The language has a formal semantics based upon synchronous data ow. An ap-
proach is presented in (Haberl et al., 2008a) to translate models given in CDA

to C code. The approach employs a time division multiple access (TMA) com-
munication schema (similar to TTA) to ensure the timely delivery of data in
order to retain the synchronous semantics of the COLA model (Haberl et al
2008a). Furthermore, although COLA is de ned by a rigorous formal semantics
in which automated tools, such as model-checking, can be applied to ek its
correctness, such a veri cation tool does not yet exist for the languageand it

remains for future work (Haberl et al., 2008a).

Although time-triggered systems obey well the synchronous approach, mak
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taining a global clock for both computation and communication is di cult to
implement, and the overhead of the implementation is often large whemdopting
the fully synchronous approach (Potop-Butucaru and Caillaud, 2007). Asyn-
chronous communication schemes (e.g. CAN (Bosch, 1991)) which are now
widely used in industries, allow a number of computing nodes opeting at dif-
ferent rates to be connected via a communication bus with no need ta global
clock for synchronisation. Globally Asynchronous Locally Synchronous (@LS)

is an architecture emerged to combine the two approaches. In this ardtecture,
synchronous components are connected via an asynchronous communication
media. The requirement for a global time is removed when a synchronauspec-

i cation is implemented within the GALS model (Potop-Butucaru and Cai llaud,

2007).

1.5.2 Scheduling Analysis Approach

This approach has been exhaustively studied in the real-time systas litera-
ture. A real-time application is considered to be composed of a set afasks
that interact. A task is a piece of code which is executed in resporsto an
event from the environment. Tasks may share resources such as praser,
memory, and communication media. Timing requirements of a system dsign
are represented in a form of periods, deadlines and priorities to th tasks. The
main role of the scheduling approach is to provide an analysis used to cam
that the timing constraints of the system are satis ed. There are two main
scheduling approaches: the cyclic executive approach and the pridyi-based
approach (Burns and Wellings, 2001). In the former approach, each task has
cyclic access to the processor in a prede ned order. In the lattempproach,
each task is assigned a unique priority according to some policy (e.g., NRA
or EDF (Burns and Wellings, 2001)). When a higher priority task is releasel

during the execution of a lower priority one, then the processor wi imme-
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diately switch to execute the instructions of the higher priority task. This
is called a preemptive schema. However, in the non-preemptive kema, the
lower priority task is allowed to complete its execution before swiching to the
higher priority task. A simple schedulability analysis is given by Liu and Lay-
land (Liu and Layland, 1973) in order to test if a set of xed-priority perio dic
tasks meet their deadlines. An enhanced analysis is proposed in (Jodemnd
Pandya, 1986) which calculates the worst-case response time of each task, and
then compares it with the deadline of the task. Although the main focus of
traditional analysis is on the worst-case behaviour in order to ensurehat tasks
meets their deadlines, the best-case response time analysis hasheaddressed
in (Redell and Sanfridson, 2002) and (Bril et al., 2004). One such application
of this analysis is to estimate the maximum variation in a task responseime.
The scheduling analysis has been extended to allow distributedystems per-
formance evaluation where end-to-end response times are computed foagks
running in a distributed environment and communicate via a real-time commu-
nication protocol. For example, the work of Tindell et al (Tindell and Hansson,
1995), Henderson et al (Henderson et al., 1998), and Redell et al (Redell et al.,
2004).

The scheduling approach in general assumes very restrictive assumigns on
the system implementation in order to analysis the behaviour of the gstem.
For example, all tasks are periodic, tasks have deadlines equal to tiveperiods,
and tasks are independent. Additionally, special purpose resourcesush as
a real-time operating system (RTOS) (e.g., (WindRiver, 1999)) and protocols
(e.g., (Sha et al., 1990)), are often required to implement preemptig scheduling
policies and to avoid deadlocks. Moreover, the approach does not allowstem
level properties (e.g. safety and functionality) to be veri ed, and only deals

with implementation level properties (tasks meet their deadlines).
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1.5.3 Other Approaches

Process algebra languages have been widely used in the speci cationchdesign
telecommunication protocols and distributed systems. A system igepresented
as a process, or composed of other smaller processes. Their formal setitmn
makes them amenable to formal veri cation (e.g. (Garavel and Sifakis, 1990))
as well as simulation. Their formalism has been extended to allow modiéng
real-time aspects of a system, for instance: ET-LOTOS (leonard and Ledc,
1997), ATP (Nicollin and Sifakis, 1994). Despite their expressiveness andlean
formalism, and the availability of analysing tools: simulators, model-checkers,
and theorem provers, their applications have been limited to supprt only the
speci cation and veri cation (e.g. TRAIAN Compiler of LOTOS NT (Garavel

et al., 2002)) rather than implementation of a system (and distributed system
in particular). Moreover, they can not deal with a broadcast communication
mechanism such as CAN (Bosch, 1991; ISO-CAN, 1993) that is most frequently
employed in the implementation of distributed embedded systers. However,
generating an implementation code from a process algebra language for uni-
processor platform has been addressed in the work of Bradly et al (Bradieet al.,
1994c,b,a). A real-time system can be represented in the timed pross algebra,
AORTA (Bradley, 1995). The language is designed to consider both veri caton
and implementation of a system. An implementation C code is generatedor
each process of an AORTA design from the same graph that is used in the
generation of an analytical model (Bradley, 1995). The AORTA system can
be validated via simulation and formally veri ed by model-checking (Bradley

et al., 1996).

PTIDES is a programming model for distributed real-time systems ¢hao et al.,
2007; Lee et al., 2009). Itis based on a discrete-event model which has beesed
for simulations. In this model, a network of components reacts to inpt events

in time-stamp order and produces output events in time-stamp order PTIDES
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leverages network time synchronisation with bounded error and boundeda-
tency in order to use the model to produce e cient distributed implementa-
tions. However, the approach, similarly to traditional scheduling analsis, is
limited to schedulability analysis which does not provide systen level analysis,
and uses a special purpose architecture (PRET architecture (Liu etal., 2010))

to achieve timing predictability.

Additionally, other formalisms such as Time Petri Nets (Berthomieu and Diaz,
1991), Timed Automata (Alur and Dill, 1994), and State Machines have been
applied in the development of real-time embedded systems, and imM@mented in
the tools: Romeo (Lime et al., 2009), Times (Amnell et al., 2003) and IAR visu-
alSTATE (IAR-Systems, 2012) respectively. However, in addition to their less
expressiveness (i.e. low-level representation format) comparetb the process
algebra formalism, their usages has not yet considered distributed iplemen-
tations. Roneo facilitates automated veri cation via model-checking for the
time petri net model of real-time system. The tool does not supportthe im-
plementation of such systems. Other works however consider thisrpblem,
i.e. producing an implementation program (e.g. RT Java) from a Petri ne
model for a real-time system, see for example (Moreno et al., 2006). In Tries,
an approach to modelling and implementing embedded systems that cobines
both schedulability analysis and formal veri cation is presented in (Norstrom
et al., 1999). The idea is to extend the standard time automata (Alur and
Dill, 1994) with real-time tasks to allow a more relaxed task model (e.g. on-
periodic tasks) to be analysed using a formal veri cation tool such as UPAAL
model checker (Behrmann et al., 2004). The approach is implemented inhe
tool, Times (Amnell et al., 2003). Although an executable code can be gen-
erated from the extended timed automata model, the approach assumes &t
the generated code is executed on a uni-processor platform that guaraees
the synchronous hypothesis (Amnell et al., 2003). A state machine-based ap

proach (such as (Samek, 2008) and (IAR-Systems, 2012)) generates event-diive
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code for uni-processor embedded systems. The tool IAR visualSTAE (IAR-
Systems, 2012) can verify a xed list of untimed properties such as thebsence
of deadlocks and unreachable states. More complex properties can be ved
by constructing another state machine, that expresses the desiregroperty,

parallel to the system design.

1.6 The Dissertation

1.6.1 Justi cation

The work presented in this thesis addresses the problem of generagi executable
code for CAN-based distributed embedded systems in a way that guaraeies
that both functional and timing properties expressed in a high-levé formal
language are satis ed. The thesis proposes a novel approach in which sysh
behaviour is speci ed in CANDLE, a high-level language which is given adrmal
semantics by translation to bCANDLE, an asynchronous process calculus. A
bCANDLE system is translated automatically, via a common intermediate net
representation, both into executable C code and into a timed automatormodel
that can be used in the formal veri cation of a wide range of functional and

temporal properties.

1.6.2 Structure and Contributions

Chapter 2 introduces our code and model generation approach, and provéss
all the essential details including models, languages, and formal notatins. The
chapter presents no new results but provides the necessary imfmation on which

the rest of the thesis is built.

Chapter 3 is concerned with the implementation of the formal language. Tl

executable code is derived from the language via an intermediate moteAn
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e cient C representation of the intermediate model is presented The chapter
presents our implementation model which de nes certain assumptins about
system components. A single broadcast asynchronous communication mecha-
nism is adopted and implemented. The communication mechanism is an ab-
straction of the CAN. All communications occur through this mechanism and
never through the use of shared variables. This single notion, emplogeboth
for external and local communication between system components, prases
exibility to the system developer to freely distribute syst em components on a
number of nodes, and simpli es the process of generating a formal mad of the
system. An AADL-like language is adopted to describe the system architeare.
The Architecture Analysis and Design Language (AADL) (Feiler et al., 2006)
is an industry standard language to specify a system architecture. Th sys-
tem description provides details to the code generator about procees, nodes,
process-to-node allocation, scheduling algorithm, tick rate, and communication

details, including the IDs of messages and network transmission rate.

Chapter 4 presents a rigorous argument that, for any system expresseda ithe
high-level language, its formal model is a conservative approximation of e
executable C code. This allows the system developer to concludéndt if a
model satis es any universally quanti ed property, then it is guaranteed that

the implementation will also satisfy the same property.

Chapter 5 proposes a number of methods that ensure an atomic update of
data which is required to implement the semantics of the language cogctly.
The methods are evaluated against some criteria we identify dependg on the
worst-case behaviour analysis of the methods in order to select a gable one

for our code generation approach.

Chapter 6 assesses the applicability and performance of the approach bgnple-
menting four case studies. The performance is measured in terms ofi¢ com-

putational e ort required to generate an executable code and a formal modl
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for a given design, and the computational resources including memory (RM
and ROM) and CPU load required to execute the examples on the target. Pe
formance results are compared with the results obtained from an alternave
method employing a widely-used real-time kernel that implemats the same
case studies. The chapter also assesses the tractability of the formahodels
which are generated from the case studies. A number of functional and tepo-

ral properties are veri ed using an o -the-shelf model checker.

Chapter 7 summarises the work, discusses the limitations of the workand

suggests possible directions for future research.



2. METHODS, TECHNIQUES AND
TOOLS

This chapter introduces our code and model generation approach, and pwides
all the essential details including models, languages, and formal notatins, on

which the rest of the thesis is built.

2.1 Overview of the Approach

An overview of our code and model generation approach is depicted in Fig. 2.
The primary component in our approach is bCANDLE (Kendall, 2001b), a
timed process calculus intended for modelling CAN-based embeddesystems.
The language features a value-passing, broadcast communication primitive
message priorities and an explicit time construct. The motivation to use bCAN-
DLE is that it enables system developers to construct system modslthat are
amenable to formal analysis by model-checking. There is a well-de ed trans-
lation from bCANDLE to timed automata (TA) models upon which standard
model checkers can be used. The existing translator is built upon #ow-level
intermediate net representation (Kendall, 2001b). The idea of the thais is to
make use of the net representation developed by the TA translator to geer-
ate executable code. The approach of generating executable code from atn
is discussed in Chapter 3. The main reason for employing the net is #t it
will be easier to establish a connection between the behaviour of # model

and the executable code since they are both produced from the same soa.
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This will be the subject of Chapter 4 of the thesis. The executablecode is
generated in the C language. The model is generated in the form of a timed
automaton so an o -the-shelf model-checker (such as UPPAAL) can be used to
verify system properties. In order to be able to verify temporal properties of the
system, time bounds of the execution of system components can be prieted
using static analysis tools such as thdBound-T (Tidorum, 2012) and aiT (Ab-
sint, 2012). Although bCANDLE is a simple language, it is likely to be too
low level for routine use in system description. Therefore, CANDLE Kendall,
2001b) was introduced for the purpose of a system design. The CANDLE is a
high-level programming language dedicated for CAN-based embedded system
The language has a formal semantics de ned by translation into bCANDLE. In
summary, the system is expected to be designed in CANDLE. Then, a b&N-
DLE model is produced from the CANDLE design of the system. Next, a net
representation is derived from the bCANDLE model. Finally, an execu@ble C

code of the system is generated from the net.

The rest of the chapter is organised as follows. Section 2.2 presentsdhmain
assumptions made and constraints on systems for which the code and mdde
generation approach is proposed. Section 2.3 introduces the bCANDLE mod-
elling language and its formal semantics. Section 2.4 introduces the tiermedi-
ate representation of bCANDLE, the net and its formal semantics. Section 5
outlines the translation rules of bCANDLE into the net. Section 2.6 intro-
duces the high-level language of bCANDLE, CANDLE. Section 2.7 outlines the
translation rules of CANDLE into bCANDLE. Finally, section 2.8 concludes

the chapter.

2.2 System Characteristics

The proposed code and model generation approach targets a class of embedded

systems (Fig. 2.2) characterised by a number of properties:
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Fig. 2.1: Overview of Code and Model Generation Approach.
Work done as part of this thesis is shown in bold.

1. A system comprises a humber of software processes that are staticall

distributed to computing nodes.

2. A computing node consists of a processor which has access to a local
memory, a programmable timer, zero or more communication controllers,

and zero or more sensors and actuators to interact with the physical world

3. A restricted scheduling approach (e.g., cooperative or round-robindis-
cussed in section 3.2.3) is applied when two or more processes are allo-
cated to a single computing node in order to allow o -line calculation of

computation response times.

4. Processes communicate via asynchronous broadcast channels which-im
plement an abstraction of the CAN protocol in which the send operation
is non-blocking and the receive operation is blocking. The abstractin of

the CAN is formed by the following assumptions:
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Fig. 2.2: Distributed Embedded System (Kendall, 2001b).

communication channels operate without errors,

the details of bit-level data transmission are abstracted so that mes-

sages are assumed to be transmitted atomically,

the CAN message ID eld is 11 bits in length.

5. Processes that reside in the same computing node are not allowed share

memory and typically use (local) broadcast channels to communicate.

6. Shared access to I/O is not allowed, i.e. in the case of multi-tasking,

access to a sensor or actuator is limited to a single software process.

2.3 The bCANDLE Modelling Language

bCANDLE (Kendall et al., 1997, 1998b; Kendall, 2001b) is a timed process cal-
culus dedicated for modelling distributed, real-time embedde systems based on

the CAN network. The language features a value-passing, broadcast communi-
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cation primitive, message priorities and an explicit time construct A bCAN-
DLE system comprises three components: @ata mode| a network mode| and
a process model It is de ned formally by a tuple ( P;N;D). In the following,
the de nition and notations are presented for each component of bCANDLE

system.

2.3.1 Data Model

Let Var be a nite set of data variables. Each variablex 2 Var takes its value
from some non-empty, nite set of values,type(x) V, whereV is the set of
data values. We assume thatV contains at least the distinguished value?,
where ? 2 sz\,ar type(x), which is taken to be the \unde ned" data value,

then:
Valuation b Var ! V
Operation b V aluation $ V aluation
Predicate $ 2V aluation
Let be a nite set of operation names, be a nite set of predicate names , then

adata environmentD overVar; and isatuple D = (type; operation predicate val)

where

type: Var ! 2V is a total function, giving for each variable x 2 Var, a

non-empty, nite set of data values, type(x), ranged over by x;

operation: ! Operation is a total function, giving for each operation

name! 2 , an operation, operatior(! ), which interprets it;

predicate: ! Predicate is a total function, giving for each predicate

name 2 , a predicate, predicat€ ), which interprets it;
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val: Var ! V is a total function which, for each variable x 2 Var, gives

the current valuation of x, where val(x) 2 type(x) or val(x) = ?.

Let D = (type; operation predicateval) be a data environment. Let x;y 2 Var
be data variables, andv 2 V a data value, then the following notational con-

ventions are employed:

D: type, D: operation D: predicateand D:valdenotetype, operation predicate

and val, respectively.
D:x denotes the valueval(x).

D[x := v] denotes the data environmentD ° = ( type; operation predicate val)
wherevaf{(x) = v and vaf(y) = val(y) for all y 6 x ( denotes syntactic

identity and 6 its negation).

D!' 4D abbreviates the condition (valva® 2 operatior(! ) » D° =
(type; operation predicateva®). The operation name ID is reserved for
the identity relation on valuations, i.e. it must be interpreted in any data

environment by the operation operatio(ID ) , f(val,val)jval 2 Valuationg

D E abbreviates the conditionval 2 predicatd ).

2.3.2 Network Model

The network model of bCANDLE is an abstraction of the CAN network which
consists of a number of broadcast channels. Each channel implements an-ab
straction of the CAN protocol. A message transmitted through a channel is
viewed as a pair consisting of a data value and an identi er. The data vale
and the identi er corresponds to the data eld and the arbitration el d of the
CAN frame respectively. Transmission of a message is divided into tiee phases:
pre-acceptance acceptance and post-acceptancephase. The acceptance phase is

the interval during the transmission of a message when receiver ned perform
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their acceptance test. The pre-acceptance phase extends from theebinning
of the transmission to the point of acceptance. The post-acceptance phasex-
tends from the the point of acceptance to the point at which the channelnext
becomes free. In practice, the location of the acceptance point may vgirfrom
one type of CAN controller to another. For example, for some CAN controllers,
the acceptance point may occur on the leading edge of the ACKO bit of the
CAN frame, see Fig 1.2. It is assumed that the time which passes durinthe
pre-acceptance and post-acceptance phases can be calculated for all naggEs.
This time is called transmission latency. The transmission latency of a mes-
sage gives the upper and lower bounds on the time which passes duringe

pre-acceptance and post-acceptance phases of the message.

A channel is de ned by the tuple (M; ; ;s;u) where:

M | V is a set of messaged. is a set of message identi ers and/ is

a set of data values.
;1 $ | is a priority ordering of messages.

M Ry R, R R1 is a transmission latency function. The
functions 'o; ub; 1B uB .M 1 R, give the lower and upper bounds on
the duration of the pre- and post-acceptance phases for the transmission
of a message.  (resp. U0, B UB) s abbreviated aslb (resp. ub, IB,

uB).

s is a transmission status. The channel is eitheifree or is transmitting
a message (pre-acceptance, acceptance or post-acceptance phase). The

notation shown in Table 2.1 denotes the transmission status.

u is a message queue.

It is assumed that M, and are static components, they are de ned at the

initialisation of a system and are unchanged after that. By contrast,s and u are
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Notation Transmission Status

# FREE no message is in transmission.
t1;t2 .. .
m pre-acceptance phase of transmission of messagewith bounds
t1,t2 on time to completion,0 t; Ib,0 ty ub.
"'m acceptance point in transmission ofm.
t1t2 .. .
m post-acceptance phase of transmission of messaga with

boundsts,t> on time to completion,0 t; IB,0 t, uB.

Tab. 2.1: Transmission Status Notation.

dynamic components which are used to model the current transmisen status

and message queue as a system evolves.

The message queue modelled here represents a single shared queua whole
network of nodes that are communicating using the same channel. It is aamed
that a transmitting node only attempts to transmit its highest prior ity message.
Additionally, a node that has a number of pending messages always attentp
to transmit the highest priority message as soon as the channel becomeeé.
This implies that the channel can not become free between the transrasion of
messages if there are pending messages. It means that the CAN controlleill
arbitrate for the bus immediately after sending the previous messageand will
only release the bus in case of lost arbitration. This is important to ensire that
the transmission of a pending message is not deferred by beginningainsmission
of a lower priority message. Each CAN controller must have a suitable buer
management mechanism to respect these assumptions. This ideal befaur of
CAN was identi ed by Tindell et al (Tindell and Burns, 1994; Tindell et al.,
1994) for scheduling analysis of CAN network. If all nodes follow the same
protocol to transmit messages, then the internal queue of all nodes cabe
viewed as one large queue for a whole network in which messages are placed i
priority order, assuming that each message is assigned a unique prioyinumber

in a network.

A bCANDLE network is a set of channels in which each channel is given a

unique identi er. Let K be a set of channel identi ers, then a networkN over
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K is an indexed set of channels which is expressed as follows:

N=((M; ;;s;u) j k2K)

Let c be a channel, then the notationN [k := ¢] denotes the networkN 0 where

N2 = cand N% = No for all k°2 K nfkg.

A channel c can act independently, by performing a discrete change in its trans
mission status or its message queue, to becon@® which gives a new network
NO9= N[k := ¢J. Alternatively, the state of of the whole network may be af-

|m

fected as time progresses. The relatiolN '™, N°represents a change of state
from N to NCannotated with the label ,; which ranges overA,[ R. A, is a
set of network action labels used to annotate discrete state changes. HEents

of R are used to annotate state changes due to the passage of time.

Fig. 2.3 gives the network transition rules. The rules are expressedsing the
structural operational semantics (SOS) (Plotkin, 2004; Nielson and Nielson,
1991) style. SOS is the predominant approach for giving a meaning to pro-
gramming and speci cation languages. It generates a labelled transition sy
tem, whose states are the terms of the language, and whose transitions befan

states are obtained inductively from a collection of transition rules ofthe form

premises

Sonclusion—+ The validity of the premises of a transition rule, under a certain

substitution, implies the validity of the conclusion of this rule under the same
substitution (Aceto et al., 2001). The rules N.1, N.2, N.3 and N.4 give the
transition rules due to discrete state changes of a network, whereashé rule
N.5 gives the transition rule due to a time progress of a network. The funtion

tcp(N) denotes the maximum time progress allowed foiN .
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N1 Nk =(#m:u)
N ™ ONTK = (O )]
0;_
N2 Nk =("m;u)
N ™ ONK = (" m:u)]
N = (" m;u)
N.3 m k IB;uB
N ! nN[k:=(m ;u)]
0;_
N.4 N =(- ";u)
NNk = (# )]
N5 0 t tcp(N)
NT'ON +t

Fig. 2.3: Network Transition Rules.

Example of network behaviour

Assume a network that consists of a single channel which can transmit nesages
of type ow . The transmitted values of the ow sensor reading are abstracted,
where 0 represents a reading at the low level, and 1 represents aading at the

high level. The network then can be de ned as follows:

N =fk 7" (M; ;;#Hlow:1li)g

Where | = fflowg, V = fO;lgand M =1 V. As there is a single channel,

then K = fkg. The function gives the transmission latencies in s, as follows:

flow ._
b 86
uw | 106
B 24
uB | 24

In the table, flow ._ could beflow: 0 or flow: 1. It is assumed that the message
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flow: 1 has been already placed in the message queue; a possible trace of the
network behaviour is shown in Fig. 2.4. The trace starts from the initial state

(#; flow: 1i) in which the channel is free and the message is queued. Then,
the time behaviour of the network progresses following the two-phasenodel.
The network performs a discrete action rst using one of the rules (N1, N.2,
N.3, and N.4) and then a time elapses using the rule (N.5) until the channk
becomes free and the message queue becomes empty. After that, the wetk

may progress using time transitions.

(# Hflow: 1i) Koflow N
% flow: 1hiy 1%, (N:5)
CCflow: 1:hi) M (N:2)
(" flow: L; hi) 1%, (N:5)
(" flow: 1; hi) ot K (N:3)
(Flow: 1°%*%hi)y 124, (N:5)
(fFlow:1%%h) 1, (N:4)
(# hi) 1°,  (N:5)
(# hi) 1 20 (N:5)

Fig. 2.4: Example of network behaviour.

2.3.3 Process Model

bCANDLE uses a simple process-algebraic language to describe the belawr
of processes. A process is either a primitive process or a compti@n of other

processes. There are four kinds of primitive processes in bCANDLE:

1. kli:xx { non-blocking send it causes the messagév to be queued instan-
taneously for transmission on channek, wherei is the id of the message

and v is the current value of x. Then it terminates immediately.

2. k?i:x { blocking receive it idles until an i-message reaches its acceptance

point during transmission on channelk. Then it immediately assigns the
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data value of the message to the variablex and terminates.

3. [ : tg;t2] { time-bounded computation it terminates not earlier than
t1 , and not later than t, , time units after beginning execution, and
it atomically transforms the data state at the instant of termination as

speci ed by the operation ! .

4. ! P { evaluate guard it idles until the data environment satis es the

guard (which is a predicate on the data state), then it performsP.

These basic processes can be compounded using a small set of operat@es:
qguential composition, choice, interrupt, parallel composition, and process re-

cursion, in order to construct a larger process:

P;Q (sequential composition) is a process that behaves a® when P

terminates.

P + Q (choice) is a process that can behave either liké or like Q de-

pending on which process can rst perform an action.

P[> Q (interrupt) it behaves as P until either Q performs an action orP

terminates.
PjQ is the parallel composition of P and Q.

recX:P is a recursive process which has repetitive behaviour, wherg is

a process variable andP is a process term.

For details on the formal semantics of these process terms, one can rete (Kendall,

2001b, p. 82).

2.3.4 Example of bCANDLE

The bCANDLE model of the ow regulator example presented in Chapter 1 is

shown in Fig 2.5. It consists of two processesFlow and Valve. Flow models
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a process which periodically reads a ow sensor and broadcasts its wa in a
ow message. Valve models a process which repeatedly waits to receive a ow
message, executes a control algorithm to calculate a new value for the vav
position, and instructs an actuator to move the valve to its new position The
time bounds given to each computation represent the lower and the uper bound
on the time taken to execute the computation. For example, the exectbn time
of the software to read the ow sensor may take between 85 to 100 time ungt

Flow | Valve
where
Flow = [ReadSensor:85,100];k!flow.x;idle
[>
[timer;10000,10250];Flow
Valve = k?flow.y;[AdjustValve:200,300]; Valve

network
I* pri Ib ub IB uB *
k = (flow : 1, 86, 106, 24, 24)
data x, y

Fig. 2.5: Flow regulator in bCANDLE.

Channel k models a CAN bus which transmits messages of typéow with a
priority equals 1 and transmission latency of between 86 and 106 time un#
from start of a transmission to an acceptance point, and a latency of betwee
24 and 24 time units from the acceptance point to bus idle respectivgl In the

following we demonstrate how transmission latency function is calclated.

The CAN protocol employs a special technique, called bit stu ng. Aft er every
5 consecutive transmitted bits of the same value, a stu bit is inseted of the
opposite value. This ensures that there are su cient transitions in the bit
stream to ensure that the nodes can remain synchronised. The equain of
(Davis et al., 2007) gives the maximum transmission time of a messag€,

containing n data bytes and including stu bits:

g+8n 1
4

Cnhn= g+8.n+13+ thit (2.1)



2. Methods, Techniques and Tools 30

where g is 34 for the standard format or 54 for the extended format. ty; is

g+8n 1
4
calculates the maximum number of stu bits. The denominator of the fraction

the transmission time of a single bit. The term of equation 2.1
is 4 because bit stu ng includes also the stu ed bits in the frame. It is assumed
for this particular example that the message acceptance point coincidesith
the leading edge of bit ACKO, see Fig. 1.2. In practice, the location of the
acceptance point may vary from one type of CAN controller to another. In
a CAN packet with n data bytes, there areg + 8:n + 1 bits from SOF up
to, but not including, ACKO. Bit stung occurs from SOF up to, but not

including, DEL. Therefore, the greatest number of bits is:
are transmitted before the acceptance point. Therefore, the lower ath upper
bound of time taken during the pre-acceptance phase can be calculatedyb

equation 2.2 and 2.3.

Ib =(g+8:n+1) ty (2.2)

g+8n 1

b= g+8nn+1+
u g+8:mn 2

thit (2.3)

The remaining bits from ACKO up to Int do not include stu bits and s o they
equal 12 bits. Therefore, the lower and upper bound of time time takerduring

the post-acceptance phase can be calculated by:

IB = uB=12:ty; (2.4)

Notice that ub+ uB= C, is always true.

For example, in a standard CAN packet, supposing a CAN bus operating at
5 10°bit=s, the transmission latency function (m) for a messagem with 1

byte size of data (i.e,n = 1) is:
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b =(34+8+1) tpir =(43)5 10°P=86s

34+8 1
ub= 34+8+1+ — thr = (53)5 10°=106s
IB=uB=(12)5 10°=24s

Consequently, the transmission latency function (m) = (86 ; 106, 24; 24) for the

channel k.

2.4 The Net: The intermediate model of

bCANDLE

The rst stage in construction of a TA model from a bCANDLE model was per-
formed (in (Kendall, 2001b)) by translating the bCANDLE model into an in-
termediate net representation which is similar to a Petri net (Murata, 1989). A
similar approach was applied by Garavel in the translation of LOTOS (Garavd
and Sifakis, 1990), and by Yovine in the translation of ATP (Yovine, 1993). The
nets which are used in bCANDLE are similar to the extended nets of (Yoine,
1993). The aim of this work is to make use of the net representation develople
by the TA translator to generate an executable code. This will be disassed
in details in Chapter 3. In this section, we introduce the net and present its

formal semantics.

The net, as usual, consists of a set of places and a set of transitions. The
net is extended in two ways. First, each transition has an associateattribute
which is used to determine whether the transition is reable or notin a given
system context, where a context consists of a network and data enviranent.
Second, a transition is associated with a set of places vulnerable tcdhé ring
of the transition. When a transition res, control is removed not only f rom the

places in its source set but also from all those places which are vulnable to
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it. This extension allows a compact representation of the interrupt operator in

particular.

Fig. 2.6 shows the net representing the ow regulator example. Place of the
net are shown as circles and transitions as boxes. The shaded circiepresent a
distinguished place,tick, modelling termination. A label inside a transition box
refers to the transition attribute. The standard ow relation is sho wn using
solid lines. The vulnerability relation is shown using dashed lires. A small
black circle in a place shows that the place is marked. For example, &msition
2 has associated attribute ReadSensor: 85;100]. The places: 2, 3 and 1 are
vulnerable to the ring of transition 4. The places 2, 4 and 5 are initially

marked in the net.

[ReadSensor:85,100] e ° m o

[timer:10000,10250] }—‘
(5) () [Ad,-uswa.vezzoo,goolj

Fig. 2.6: Net of the ow regulator example.

2.4.1 De nitions and Notation

A net is de ned formally as a tuple R = (W; ;W') where:

W is the set of places.
is the set of transitions.

W! is the set of initial marked places.

Atransiton =(w;WY::W T)2 where:
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w 2 W is the trigger of , denoted
WY W is the set of places vulnerable to , denoted
is the attribute of , denoted

WT W is the target set of , denoted

A place w is a trigger of exactly one transition. Transition attributes are just

basic processes. The séittribute is de ned by the grammar:
m= bjh X

where 2 Attribute is a transition attribute. X 2 is a process variable.h i
denotes a transition attribute which consists of the predicate 2 . bis a
clocked basic process termili:x, k?i:x, or [I : t1;to]"). Timed automata use
clock variables to model passing the time. At the rst step in the translation of
bCANDLE to timed automata, explicit clock variables are introduced int o the
process terms and the network channels of the bCANDLE model. A computa-
tion, [! :t1;to], and its associated clock variableh, are written as [! : tl;tz]h,
and a process term,P, and network channel, N, when decorated with clock
variables, are written as® and N respectively. The set of bCANDLE systems
following clock allocation is written as BCAN. The set of clock variables is

represented byH and h ranges overH.

The net of the ow regulator example shown in Fig. 2.6 is then de ned formally

as follows:
R=(f0;1,234569:f 1; 2 3 4 5 69:f2 4;50)
where

1 = f1;fg ;idle; f Ogg
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o = f2;fg ;[ReadSensor: 85; 100} f 3gg
3= f3;fg ; k!flow:x; flgg
4= T4;£2;3;1g; [timer : 1000Q 10250]f 2; 499
5 = f5;fg ; k?flow:y; f6gg

¢ = 6;fg ; [AdustV alve : 200 300} f 5gg

2.4.2 Behaviour

The behaviour semantics of a net is given as a transition system betvem states
consisting of a marking and a system context comprising a network and aata
environment. Given a net: R = (W; ;W!), a system can evolve from one
state (W4y; N; D) to another state (WZ;NPO, D9 as result of either a process
transition or a network transition where W, W is a marking of R, N is
network context, and D is data context. In a process transition: for a trigger
w 2 W of a transition , if the context of N and D satis es conditions required
by the attribute  of , then new marking W5 is created fromW by removing
w and vulnerable places to , and then including target places of . The new
context, I‘@O, DOis created according to the requirements of the attribute. In
the case of a network transition, the system can evolve to a new state i&
network component is modi ed, but marking and data environment remain
unchanged. The process transitions of \Wy; N; D) are given by the rule R.1,

and the network transitions by the rule R.2.

W2 WA (w,WY: W T)2 A re(; D HENCDOA
Wo=Winw[ WY)[ WTAH=H[ clk(WT)

R.1 —
(W; ;D) 1" 7 g (Wo; N2 DY
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m,!; n;Hnm,Q.\
8k 2 K;i 2 I:(: awaitedW; k;i) _ N 6 (" i:;) _ My = N9
R.2 —
(w;N;D) 1 " g (WiNS D)

The re relation, as given in Fig. 2.7, simply determines the semantic rulesdr
the basic processes. is an action label, , is a network action label, H is a set
of clocks, is a clock constraint, K is a set of channel identi ers, and| is a set
of message identi ers. h, is a distinct clock variable used to model an urgent
transition (executed without delay). clk(W ) denotes a set of clocks associated
with the set WT. awaitedW;k;i) holds i, in the marking W, it is possible to

receive from channelk a message with identi eri. Formally,

awaitedW; k;i)bfw 2 Wj = k?: g6 ;

F snd k=(s;u)v=Dx
re (kli:x; I‘{P;D; tt; kv, fhug;I@[k =(s;u" iv)];D)

F_Rcv M = (" iv; )

re (k?i:x; I@; D; tt; k?i:v; fhyg; I@; D[x:= V]

| ! on
F_Comp DI 4D *t12 N

re([! :ty;t]";D;h tg!; fhyg ;D9

F_Gu DF
re (h i;N;D; tt; ; fhug;I@;D)

Fig. 2.7: Rules for re.

We are interested only in the process transition when generating ate because
both marking of the net and the data state can be changed. The network
transition can only modify the network state and we assume that the behaiour

de ned by this rule is handled by the CAN controller. The following example

shows an example of a possible behaviour of a net.
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2.4.3 Example of Net Behaviour

In this example, we give a possible behaviour of the net of the ow reglator

example shown in Fig. 2.6. The following conventions are adopted:

A system state is shown as a tuple \{V; N; D).

D is the initial data state where all variables are set to zero.D [var := val]
denotes a data stateD ° which is the same asD except that the variable

var is associated with the valueval in D°

The network component shows only the dynamic attributes of the single

channel k.
Time delay is chosen arbitrarily from the allowable range of values.

The transmitted values of the actual ow sensor reading are abstracted,
where O represents a reading in the low level, and 1 representsraading

in the high level.

A possible behaviour of the net is illustrated in Fig. 2.8. The net trace starts
from the initial state (f2;4;5g; (# hi); D) and evolves to a new state as result

of either the process transition ruleR.1 or the network transition rule R.2.

2.5 The Translation of bCANDLE to Net

For a bCANDLE system (Fb; N; D)2 BCAN, we brie y give in the following the
translation rules of constructing the net for B, denoted N JPK We respectively
consider the basic terms, the guard ! B, the compound termsP; B, B + B,
B,[> B,, and B,jB,, the process variable, and the recursion operator. For more
details about the net construction from a bCANDLE system, one can refer

to (Kendall, 2001b, p. 112).
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(f 2; 4 59; (# hi);: D) 00 R.2
(f2;4:5g: (# hi); D) ReagSensor  p1

(f3;4;59; (#hi); D[x := 1]) kiflow: 1 R.1
(f 1;4;59; (# Hlow: 1i); D[x := 1]) vt R2
(f1;4;509; (86;106 flow: 1; hi); D[x := 1]) !100 R.2
(f1; 4 5g;(0;6 flow: 1; hi); D[x := 1]) k" flow: 1 R.2
(f1;4;5g; (" flow: 1; hi); D[x := 1]) “owt Rra
(f1;4;69; (" flow: 1;hi); D[x := 1;y := 1)) flog: 1k R.2
(f1;4,69; (flow: 1 24;24; hi);D[x :=1;y:=1]) !24 R.2
(f1,4,69; (flow: 1 *°, hi);D[x :=1;y:=1]) < R.2

(f1;4;69; (# hi); D[x :=1;y := 1]) %0 R.2
(f1;4;69; (#hi);D[x :=1;y :=1]) Adugtvalve o 4
(f1,4;59;(#hi);D[x :=1;y:=1)) 1_!0000 R.2
(f1;4;5g; (#hi); D[x == 1;y := 1]) fimer R.1
(f2;4;59;(#hi);D[x :=1;y:=1]) !

Fig. 2.8: Example of net behaviour.

Basic terms : Let Pbe one of the clocked basic termkli:x, k?i:x or [! :tq;to]",

then the net of P is constructed as follows:

N JbKb (fwg; f (w; fg; B ftickg)g; fwg)

Guard : Let NJPK=(W; ;W!'), then the netof ! B is given by

NJ ! IbKia(W[f wg, [f (w:;fg;hi;W'")g;fwg)

Sequential composition : Let (W;; i;Wi') = NJFb,K for i 2 f1;2g9, be
disjoint nets. The net N Jlbl; Iszfor the sequential compositionlbl; Ibz is
given by

NIy K (Wy [ Wa 5[ 2,WI)
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where

1bf j 2 1~ 6 ftickgg

[f(; ;W 3)j 2 1~ = ftickgg
Choice : Let (W;; ;W)= NJIh.KforiZfl;Zg, be disjoint nets. Then
NPy + Kb (Wi Wa, ;W] [ W)
where
bf j 2 1~ 62W/g
[f(; [Wa i )j 2 1% 2Wig
[f ] 2 20 62W,g
[f (s [Wis )i 2 28 2Wg
Interrupt : Let (W;; i;WiI )= N JFb,K for i 2 f 1;2g, be disjoint nets. Then
N IB[> BoKb (W[ Wao; ;Wi [ W3)

where

bf j 2 1~ 86 ftickgg
[f(; [Wa ;5 )i 2 1~ =ftickgg
[f j 2 2~ 62Wg

[f(; [W; )i 2 2% 2Wg

Parallel composition : Let (W;; i;Wi') = N JIb.K for i 2 f 1;2g, be disjoint

nets. Then

N JIB KD (We [ Wo, 1 20 W] [ W))
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Process variable : Let X be a process variable, then the net oK is de ned:
N IX Ko( fwg; f (w; fg; X; fg)g); fwg)

wherew 6 tick is a place.

Recursion operator : Let N JbK = (W; ;W!), then the net of rec X:P is
given by
N Jrec X:Pra(W; “w')

where

0

5f j 2 ~ 6Xg

[f(; ssw )j 2 ~ =Xg
2.6 The CANDLE Programming Language

bCANDLE is very low-level for system developers to be used to writea system
description. Therefore, CANDLE (Kendall, 2001b) was introduced for the pur-
pose of a system design. CANDLE (Kendall et al., 1998a; Kendall, 2001a,b) is
a high-level programming language intended for distributed embeddedystems
based on the CAN network. The formal semantics of the language is de ned
by translation into bCANDLE. A CANDLE program consists of a number of

processeswhich implement a system behaviour.

Fig 2.9 shows two CANDLE processes representing the ow regulator exmple.
The CANDLE which is used in this work is a simpli ed version of the origi-
nal one. More elaborated language is available in (Kendall, 2001b). The rst
process implements the behaviour of the ow task. The second pragss imple-
ments the behaviour of the valve task. The actual de nition of the data vari-
ables Flow and vFlow) and the operations (readSensor and adjustValve )

are assumed to be provided from an external language (e.g., C). The two pr
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Flow | Valve
where

Flow =
every 10000 do
readSensor();
snd(k, FLOW, fFlow)
end every

Valve =
loop do
rcv(k, FLOW, vFlow);
adjustValve()
end loop

Fig. 2.9: Flow regulator in CANDLE.

cesses are composed together using the parallel operatqp.( In addition to
primitive statements (e.g., snd, rcv, and procedure calls), the language fea-
tures constructs to control ow of a program, like any traditional programmi ng
language, such as branching, loops, and exceptions handling. In the follamg,

we informally introduce the compound statements of the language.

Compound Statements

Case Statement

In the case statement, one of several statements is executed depending on the

evaluated value of an expression. The statement has the following gerarform:

case e
whenvg => sg

whenv; => s

whenv, => s,
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otherwise => s

end case

When the value of the expressiore is evaluated, one of the corresponding state-
ment s; will be executed whenv; matches the return value of the expression. If

none of them are matched, the statements is executed.

Select statement

The statement allows a choice between a number of statements to bexecuted
depending on the reception of a message or the elapse of a time. Thelect

statement has the following form:

select
when rev(ky;igixy) => s1

when rev(ksz;izixz) => s

when rev(Kp;inixn) => sy
when timeout elapse( t) => s

end select

If the messagei; is successfully received, then the statemens; is executed. If
more than one message is received, then the choice between which statent is
executed, is made non-deterministically. If no message is receigt beforet time
units, then the statement s is executed. Additionally, CANDLE provides an

extended form of the statement as follows:

select
when rev(ks;iiixy) => s

when rcv(ka;ioixo) => sp
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when rcv(kn;in:iXn) => sy
when elapse(t) => s

in
body

end select

The statement behaves similarly to the original one except that the lody state-
ment is executing while waiting the message reception and the timesxpiry.
When a message is received or a time delay is expired, then the exdion of

body is interrupted, and the execution of the corresponding statements started.

Loop statement

The loop statement allows an expression to be executed repeatedly forever.

The statement has the following form:

loop do
S

end loop

where s is a statement.

Every statement

The every statement allows an expression to be executed periodically. The

statement has the following form:

every T do
s

end every

where s is a statement that runs periodically every T time units. The body of

this statement is initiated immediately.
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Trap and Exit statements

The trap is used to handle exceptions produced in a program block. The

statement has the following general form:

trap
whenx; => s

whenx, => s,

when x, => s,
in
body

end trap

where x; is an exception identi er and s; is a statement that acts as a handler
for the exception. The body of thetrap begins executing. An exception can

be raised insidebody using the exit statement, e.g.

exit X

If an exception is trapped, the execution ofbodyis interrupted and the associate

exception handler begins executing.

2.7 The Translation of CANDLE to bCANDLE

In this section, we brie y give the rules of translating the CANDLE stat ements
into bCANDLE. We consider the primitive statements rst and the comp ound
statements after that. For more details about the construction of a bCANDLE

model from a CANDLE program, one can refer to (Kendall, 2001b, p. 164).

Null and Idle statements
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Jnull K$b null
Jidle Kb idle

Send and Receive statements

Jsnd(k;i:e)K B klizx
Jev (k;i:e)Kd k7i:x;

Elapse statement

Jelapse (T)K & [timer : T]
Procedure Call

JP(ey; i en)Kb [T tlb;tub]

where P is the name of the procedureg is an expression that expresses
a parameter of P, and t"® (resp. t“) is the lower bound (resp. upper

bound) on the time required to execute the procedure and to evalua its

parameters.

Case statement

Jcase e whenvg=>sg whenvi=>s;:::whenv,=>s, otherwise =>s end caseK b

[tP:tUe]: (g1 JsgK + 1! JsiK + i+ o1 Js,K+ | JsK

wheret® (resp. tU) denotes the lower bound (resp. upper bound) on the
time required to complete the evaluation ofe, ; istrue i the expression

e equalsv;, and the guard istrue wheni :( o_ 1:::_ n).

Select statement

Jselect when gop=>s1 wheng;=>s::::wheng,=>s, end select Kb

(o;So+ 1;S1+ i+ niSn)
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where JgK= , and is either k?i:x or [timer :t].

The extendedselect statement is translated into bCANDLE as follows:

Jselect when gop=>s¢ whengi=>s;:::whengy,=>s, in s end select Kb

(K[> (o;so+ 1;81+::i+ niSn))
Loop statement
Joop do s end loopK+H rec LOOP:JsKLOOP

where LOOP is a new process variable.

Every statement

Jevery T do s end everyK$

Joop do select when elapse T in s;idle end select end loop K
Trap and Exit statements

Jrap when Xp=>sg whenxi=>s1:::whenx,=>sS, in s end trapK b

(JsKH>( o! JsgK+ 1! JsiK+ :::+ 1 JspK)
where the guard ; is the true when the exceptionx; is raised.
Jexit xK b [exit x : t'®;t40]: idle
where exit x is an operation required to raise the exceptiorx.
Sequential and Parallel Composition

Js1 . s Kb JsiK: JsoK
Js; j soK b JSlKj JsoK
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2.8 Summary

In this chapter, an overview of the code and model generation approach hdseen
provided. The main assumptions of the target distributed embeddedsystems
have been presented. The essential component of the approach which ihe
bCANDLE modelling language has been introduced. The net, the intermdiate
representation model at which our code and model generator are based, has
been de ned. Because bCANDLE is very-low level for system develops, the
CANDLE high-level language is introduced. The translation rules of CANDLE

to bCANDLE and of bCANDLE to net have been outlined.



3. CANDLE CODE GENERATOR

3.1 Introduction

We aim in this chapter to demonstrate how an implementation is generatd from
CANDLE. Our approach generates executable C code from the intermediate et
representation. The C language is chosen because is widely supporteddahas
available cross-compilers and static analysis tools. A program writtenn C is
not tied to a particular hardware platform and so it can be easily ported. There
are particular reasons for using the net to derive the implementation First, the
net is a simple and compact representation which can yield a small siz of
code suitable to a resource-constrained embedded system. Secortdere are
some CANDLE constructs that lead to similar nets at translation. Therefore,
implementing the net can reduce the e ort required to generate cae for each
CANDLE statement. Third, the behaviour of the implementation should b e
designed in a way that matches the semantics of CANDLE. This problem is
now scaled down to the problem of generating code which only needs tespect

the semantics of the net.

The chapter is organised as follows. Section 3.2 introduces our implesntation
model to execute the net. Section 3.3 presents the representati of the net
in the C language. The implementation of CANDLE channels is explained
in section 3.4. A simple architecture language is presented in sectioB.5. The
language is adopted to describe the system architecture includingdrdware and

software components. Finally, section 3.6 concludes the chapter.
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3.2 The Implementation Model

This section de nes the implementation model to execute a net. his model
has been adopted in order to restrict the run-time behaviour of the gstem in
a way that allows o -line prediction for the execution time bounds of system
components. The system then can be analysed to verify that it conformgo a

speci cation and that su cient run-time resources are available.

3.2.1 Features and Notation

Fig. 3.1 shows some features of the implementation model and introd#s no-
tation used in its description. The implementation is clock-driven: a timer
provides a single interrupt source and a periodic interrupt to the implementa-
tion. The period of the interrupt is denoted by T. The interrupt is serviced by
an interrupt service routine (ISR) that takes Cs time units to execute on each
invocation. The time Cs comprises the maximum time to execute the ISR algo-
rithm, presented in section 3.3.2, and the maximum time to enter and éave the
ISR. If the actual execution time of the ISR is less thanCs for any invocation
then the completion of the ISR is deferred until Cs time units have elapsed.
This helps to reduce jitter in the system. The ISR is assumed tocontain a
notional reaction instant, , at which point all executable instantaneous actions
are deemed to be performed. It is not known when this instant will lappen
exactly inside the ISR, but it could be at any time between the begiming and
the end of the ISR. This non-determinism in the model allows the onssion of
many details in the model of the ISR, simplifying it and making modd checking

more tractable.

A reaction may include the following “instantaneous' actions:

update active soft timers,

transfer external CAN messages to intermediate ISR bu ers,
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Fig. 3.1: Features and notation of the implementation model.

identify the termination of computations and re associated transition s,

transfer data to transmit bu ers for any active kli:x transitions and re

the transitions,

transfer message data, if available, from intermediate ISR bu ers to po-

cess variables for activek?i:x transitions and re the transitions,
perform local communications, if available, and re transitions,
evaluate active guards and re the transitions of those that are satis ed,

release the next computation.

Fig. 3.1 illustrates the release of a computationC; in the reaction of the second
invocation of the ISR. Its actual execution time is denotede. The time available
for process computation in any tick period is called acomputation interval and
is denoted by . Notice that in any tick period, a node is executing the ISR,

executing some process computation or idling, i.eT = Cs+

The period of the interrupt T and the ISR time Cs are not xed; they may
vary from one computing node to another. The value ofT is assumed to be
determined by the user at design time. Di erent values of T may have di erent
e ects on the real system. For example, ifT is selected to be short, then the
system becomes more responsive because events are noticed more lduibut

more overhead occurs because the ISR is executed more often. On thther
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hand, whenT is chosen to be long, the system will su er less overhead, but it

becomes less responsive.

The proposed model has been in uenced by other approaches, mainly thime-
triggered approach (Kopetz, 1997) and synchronous approach (Benveniste and
Berry, 1991). In the following, a comparison between our approach and other

approaches are discussed.

3.2.2 Comparison with Other Models

There are two distinctly di erent approaches to the design of real-time embed-
ded systems: event-triggered (ET) approach and time-triggered (TT)approach.

It is not the purpose of the thesis to compare the event-triggered and ime-
triggered approaches. Many comparisons between the two approaches have
been published elsewhere, for example (Kopetz, 1991; Alber, 2004; Scatlahd
Brennan, 2006; Armengaud et al., 2009). The aim here is to justify the decision

behind adopting a time-triggered design to execute the net.

The majority of software architectures follow the ET paradigm. In the ET
approach, all system activities (computations and communications) are iiti-
ated whenever a signi cant change in the environment (event) occus, such as
a time tick, a button press, or arrival of a message. The ET approach is char
acterised by exibility and imposes fewer design constraints compagd to the
TT approach. It requires fewer assumptions such as in constructinghe system
architecture (Armengaud et al., 2009). Adding additional components to the
system does not require changes in the other system components. Hoveg, the
ET architecture uses the notation of an interrupt to observe the occurence of
the environment events. Each event can be associated with an inteapt that
forces the system to react to the event by executing an appropriate @ampu-
tation (task). Because it is not known pre-runtime when the interrupts will

happen, it becomes di cult to calculate the worst-case execution times of the
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systems components o -line which are required to construct a modeof the sys-
tem. Therefore, unless events are periodic or sporadic, the tempal behaviour
of the ET system becomes di cult to predict. Although there are some tech-
niques such asstopwatches(Cassez and Larsen, 2000) that does not require
pre-runtime calculation of worst-case execution times, using stopatches may
make some veri cations undecidable (Brihaye et al., 2006; Cassez and Larsen
2000; Henzinger et al., 1995). Additionally, the architecture requires spdal
mechanisms (e.g., semaphore and mutex) to resolve data access sharirgd
inter-task communication and synchronisation. These mechanisms areesource
demanding and can make timing analysis of the system behaviour even mer

complex.

In the TT approach, all system activities are initiated at pre-de ned points in
time (Kopetz, 1997). The approach imposes a restriction on using interrpts in
order to preserve the predictability of the system behaviour. There is usually
one source of interrupt which is the tick timer (Kopetz, 1995). The sysem
periodically observes the state of the environment and triggers an apppriate
action according to a prede ned plan. TT architecture employs a static or pre-
de ned scheduler in which the schedule of all software componentsicomputed
o -line (Xu and Parnas, 2000). Since the main characteristics of the componets
(periods, worst-case computation times, and deadlines) are known iadvance,
it is possible to verify that all timing constraints will be satis e d. Using such
a scheduler strongly facilitates timing analysis of the system (Eber, 1998).
Moreover, the static scheduler provides pre-run time resolvig of the timing
and data dependencies and so avoiding using resource demanding rhagisms
such as semaphores. However, building the TT schedule requiresraimber of
parameters of the system components to be determined during the d&gn time,
such as the tick interval and the task order and o set. The problem is that de-
termining these parameters is not trivial and characterised as NP-hard Gendy

and Pont, 2008). Moreover, slight changes to these parameters may lead to a
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signi cant change in the reconstruction of the schedule. This problen is called
the \fragility" of the TT design (Pont, 2008a). In contrast, our approach does
not impose restricted assumptions (e.g, periodicity) on the systen components.
Once the bounds on the execution times are calculated, they are expat to the
model generator. An abstract model is produced from the system desigtion.

Then the system behaviour can be analysed using a model-checkingol.

Additionally, the proposed approach has been in uenced by the synchroous
approach (Benveniste and Berry, 1991). The synchronous approach adopts a
very conservative assumption called thesynchrony hypothesisabout the system
behaviour. It assumes that computations and communications of the systm
components take zero time to execute. The system reacts to its emonment
instantaneously. At each reaction, it reads its inputs, performs comptation,
and then generates its outputs. The system components communicate tbugh
broadcast channels. During one reaction the transmitted data becomesvailable
instantly to each receiver component. The broadcast communication mea-
nism behaves similarly to wires in a synchronous digital circuit Benveniste
et al., 2003). With the fully synchronous approach it is not always feasibleto
build systems because it is often that systems are implemented ondistributed
architecture in which a set of computing nodes communicate by asyrntonous
means of communication. For that reason, the globally asynchronous locally
synchronous (GALS) approach (Berry et al., 1993) has been proposed to unify
the capabilities of the synchronous and asynchronous approaches. The sys
tem can be seen in this context as a set of synchronous components that are
connected by asynchronous communication channels. In contrast, our appach
adopts more exible and realistic assumptions about the system behawiur than
the the synchronous approach. Computations take time to execute. The
ecution times of the computations can be bounded by adopting a restrigve
software architecture similar to TT architecture. The system components com-

municate through broadcast channels which abstract the CAN protocol. If the
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components are allocated in the same computing node, they communicatéa
local channels in which the transmission time is assumed to occunstantly. The
concept of local channels is discussed in section 3.4.2. When the compgois
are distributed, the transmission time is not instant. Moreover, the GALS ap-
proach employs two di erent semantics models to express the sysm behaviour,
which is locally synchronous and deterministic, and globally asynchonous and
non-deterministic. This however makes the task of checking whéter the im-
plementation respects the semantics of its model so hard. In contras our
approach employs a single semantics model, which is fully asynchrons and

non-deterministic.

3.2.3 Scheduling

Many nodes in a CAN-based system may require only an elementary softwar
architecture in which a single process repeatedly performs a sipte function,
e.g. a sensor node that samples its environment, normalises the readj given
by its ADC and broadcasts the result on the CAN bus. However, some nodes
may require a more complicated architecture in which the CPU is shred by
computations released by multiple processes. A key requiremeribr the appli-
cation of our method is the capability to perform o ine calculation of best -case
and worst-case bounds on the total time required to complete all computa-
tions, including time when a computation is ready to run but is not allocated
to the CPU. The exibility of the computation model that we allow means
that, in general, it is not possible to adopt typical scheduling strategies such
as xed-priority pre-emptive or earliest-deadline- rst in our im plementations,
since the periodicity requirements for the application of respone-time anal-
ysis technigues applicable to these strategies may not be satis ed Instead,
we consider other standard strategies including round-robin and coopative

scheduling (Liu, 2000; Pont, 2008b) in which an oine analysis is possible.
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These standard strategies are reviewed in the reminder of this seicn.

1. Pure round-robin scheduling is a simple scheduling approach in which
the processes are ordered and each process is allocated a single compu
tation interval (‘slot') in which to execute (part of) a computation. T he
next slot is allocated to the next process in the ordering and so on, il
all processes have had a chance to use a slot. This completescaund of
the schedule. If there aren processes in the round-robin set, then every
round is of length n. The schedule is simply the repetition of rounds
executed in this fashion. This approach is reasonable for long running
computations (i.e. computations that needs more than one computation
interval to complete). However, if the set of processes allocatedot the
same node contains short computations (i.e. computations that can com-
plete in a single computation interval), then the round-robin approach
could be ine cient. For example, Fig. 3.2 shows three short computa-
tions (C1, C2, and C3) scheduled using the simple round-robin approach.
The computations become ready to run in the rst tick. Because they
are dispatched in order,C3 requires three ticks (one round) to complete,

even though it is a short computation.

T

C1 Cc2 (€8]

e3

Fig. 3.2: Simple round-robin scheduling of short computations.

2. Cooperative scheduling may be adopted when the set of processes
allocated to a node contains computations that are short enough to t
together in a single computation interval. They can be scheduled co-
operatively, i.e. in any computation interval, each process with a rady

computation runs to completion and then relinquishes the CPU to allov
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execution of the next ready computation, if there is one (Pont, 2008b).
When all ready computations have been completed, the idle processins
until the next timer interrupts. Fig 3.3 shows three short computations
scheduled cooperatively. Now, becaus€3 has a chance to run in the
same computation interval asC1 and C2, the computation will complete

in one tick time.

T

Cl(|C2| C3

—
e3

Fig. 3.3: Cooperative scheduling of short computations.

3. Weighted round-robin scheduling is a modication of the simple
round-robin approach in which each process is assigned weight The
weight of a process determines the number of consecutive slots thatre

allocated to it in every round. If the round-robin set comprises pracesses

of slots in every round isP ", si. For example, Fig. 3.4 and Fig. 3.5
show two computations C1 and C2 scheduled using the simple and the
weighted round-robin approach, respectively. By using the simpleaound-
robin method, although C1 completes within one tick time, C2 will require
4 ticks (two rounds) to complete, see Fig. 3.4. However, in the modied
round-robin method, we could assignC1 weight 1 and C2 weight 2, then
the computation C2 will complete within 3 ticks (one round), see Fig. 3.5.

T
—

C1 c2 Cc2

e2

Fig. 3.4: Pure round-robin scheduling.
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Il

e2

Fig. 3.5: Weighted round-robin scheduling.

4. Hybrid scheduling A hybrid scheduling algorithm combines cooperative
scheduling and weighted round-robin scheduling. The set of process,
P, is divided into two disjoint subsets, P¢, and Py, of cooperatively-
scheduled and round-robin processes, respectively. The availdocompu-
tation time in a tick period is divided into a time interval, o, for
cooperatively-scheduled processes and a time interval,, for round-
robin processes. The processes iR, are scheduled using cooperative
scheduling during ¢, and the processes i, are scheduled using weighted
round-robin scheduling during ;. The actual values for ., and | can
be chosen freely by the system developer, as long ago+ = . Hy-
brid scheduling subsumes both cooperative and round-robin scheding:
if Po = P (and ¢ = ) then we have pure cooperative scheduling;
and if P, = P (and | = ) then we have pure weighted round-robin
scheduling. Fig.3.6 shows an example of the hybrid scheduling of tkee
computations. The computation C1 and C2 are scheduled cooperatively,

whereas the computationC3 is scheduled using the weighted round robin.

T

cilc2 C3

Fig. 3.6: Example of hybrid scheduling.

Four static scheduling approaches have been proposed. For the purposé this
study, we implemented only the pure round-robin and the cooperatie sched-

uler. The choice between using one of them is performed o ine by thesystem
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developer. For example, if a process has a computation that updates aast de-
vice, then it should not be scheduled cooperatively with other pr@zesses because
this kind of computation is considerably slower than that which illuminates a
LED for example. A general analysis of the response times of computations dn
der these scheduling policies is presented in section 4.2.4. Theaplementation

of the other methods will be considered in future work.

3.3 Representation of the Net

Embedded systems have constrained resources (CPU and memory) so aft
cient executable code in terms of space and performance is a common -re
quirement. In this section, we demonstrate how a net is implemeted in C.
E cient data structures are proposed to store a net in memory. Attention has
been paid to splitting the code between read-only memory (ROM) andandom-
access memory (RAM). Storing part of the code in ROM prevents unexpeted
changes. For example, a stack may overwrite the program data as it shares
RAM area with the program. Moreover, minimising the required area of RAM
reduces the total cost of the embedded system because RAM is more exysive
than ROM storage chips. In the following, the data structures used torepresent
the net are presented in section 3.3.1. The pseudo code the ISR thatpdates

the net state is presented in section 3.3.2.

3.3.1 Data Representation

The main architecture of the net is described using a UML class diagranmte-
picted in Fig. 3.7. In this gure, the class Net consists ofplaces marked places
and a number of transitions. A transition is represented by the classT ransition

which consists oftrigger, target places, vulnerable places and an attribute.

The attribute can be one of the simple primitives: computation, send receive,
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or guard. Therefore, the attribute is de ned as an abstract class represnted
by Attribute and each primitive is de ned as a sub-classComputation, Send,
Receive or Guard respectively. A computation can be a normal computation
(that is executed outside the ISR and updates the data state) represnted by
the sub-classCompt, an idle computation represented by the sub-clasddle,
a delay (timer) represented by the sub-classDelay, or an exit computation
(that raises an exception) represented by the sub-claskxit . We di erentiate
between these types of computation because each one has a di erent ingmen-
tation. A guard can arise in three ways: as a result of a function call in the
case statement, a value of a variable in the case statement, or an exception
handled in the trap-exit statement. Each type of guard is de ned by the sub-
classesGuardFun, GuardV ar, and GuardExp respectively because they are

implemented in di erent ways.

Net Transition
1 1l..n -
-places <>————=—1 -trigger
-marked Places -target Places
-vulnerable Places

Guard Computation
-quard -operation
A i A
| F—————— o ——— - |
I I I F==1 Exi
Guardvar [~ ~ 7] | | |
| 1 1 |
1 ] __
| Receive Send I Delay
___ -channel -channel |
GuardFun Bl -message 1D -message ID 1
: -variable -variable :' == lde
| |
GuardExp [T~ = I = Compt

Fig. 3.7: Net architecture in UML.

In the following, we demonstrate how each element of the net is implaented.
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First, we show the representation of the marked place, target places ahvul-
nerable places. Next, the structure of the transition and the net is pesented.
After that, we illustrate the representation of the attribute. Then , we show
how the data of the net is split between ROM and RAM. Finally, we give an

example.

Places of the Net

The marked places, the target places and the vulnerable places of a netar
represented by usingbit-set data structures. A bit-set is de ned as an array of
words. A word is a platform dependent and could equal 8, 16, or 32 bits. There
is a 1 or O corresponding to each element, specifying whether it ia member
of the set or not. Bit-sets provide a more space e cient solution than normal
arrays. Additionally, the C language features bit operations which can faditate
straightforward implementation of the set operations such asntersection, union
and complement These operations are needed to implement update marking
of the net. The number of words needed to specify the size of the biet is
expressed byN PLACBNORDSThe number of words of a 32-bit platform (for
example) can be obtained from the total number of the net placedNPLACES

using Equation 3.1.

N.PLACENORDS %S (3.1)

Transition and Net Structure

A transition is represented as an ordinary C structure containing targe places,
vulnerable places and an attribute. The net is de ned as an array of this
structure. There is only one unique trigger (a number of a place) for eery
transition, therefore an index of a particular transition in the array e xpresses

the trigger of the transition. Each transition must have a storage area for
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an attribute. The Attribute is represented using three elds i n the transition

structure: type, index, and attribute . Fig. 3.8 shows the transition structure.

target index

type

vulnerable attribute

Fig. 3.8: Transition Structure.

Attribute Representation

The type 2 AttributeType indicates the type of an attribute. The set of
attribute types is de ned by:

AttributeType $ fIDLE, COMPT, DELAY, EXIT, GFUN, GVAR, GEXP, SENDgRECV

where the elements of the set represent the sub-classégle, Compt, Delay,
Exit , GuardFun, GuardV ar, GuardExp, Send, and Receive respectively.
The index and attribute  eld are de ned as integers and used in a variety
of ways to store the details of dierent attributes. This is discussed in the

following.

Computation When the attribute type is computation, there are three ways
to deal with the attribute. First, if the computation is IDLE or COMRThe
index eld of the transition refers to a particular block in a net control
block (NCB) table. Each net has an NCB which represents the state of
the net during the execution of the system. Primarily, the NCB deals
with the case at which the net is currently executing a computation and

so it indicates the status of the computation:

1. it is currently executing but not completed,
2. itis completed,

3. itis not currently executing.
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The NCB also stores the result when the computation is a function. The
attribute  eld of the transition contains the memory address of the C
routine that implements the computation. Second, if the computation is
DELAYthen the index eld refers to a particular timer in a timer table.
The timer table consists of a number of soft timers, and each timer is
allocated to a delay transition. These timers are updated by the ISRin
order to track the elapsed time for active (marked) delay transitions The
attribute  eld is used to store the number of ticks to delay. Third, if
the computation is EXIT, then the index eld refers to a particular block
in an exception control block (ECB) table. Each net has an ECB used
to indicate what exception is currently raised in the net. There is a ag
associated with each exception in the net. Theattribute  eld contains

the exception mask which is used to access a particular ag in the ECB

Guard When the attribute type is guard, there are three ways to deal with
the attribute. First, if the guard is GFUNhen the index eld refers to the
NCB which stores the result of a function. Theattribute  eld holds the
intended value of the guard. Second, if the guard iSSVARhen the index
eld contains the memory address of the variable, and theattribute  eld
also holds the intended value of the guard. Third, if the guard isGEXP
then the index eld refers to an ECB in the ECB table. The attribute
eld contains the exception mask which is used to access to a partidar

ag in the ECB.

Send and Receive When the attribute type is SENDor RECYthe message
identi er, message length, and an index to a particular block in a port
control block (PCB) table, are packed in theindex eld. The PCB records
the state of a particular port connected to a channel during execution
The PCB identi es whether the communication is local or external. It

indicates if there is a new received message and provides a placedimre
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attribute eld

type eld | index eld

IDLE Index to NCB table. Address of idle routine.

COMPT Index to NCB table. Address of computation routine.

DELAY Index to timer table. Number of ticks.

EXIT Index to ECB table. Exception mask.

GFUN Index to NCB table. Guard value.

GVAR Address of variable. Guard value.

GEXP Index to ECB table. Exception mask.

SEND Message ID, message length, Address of variable.
and index to PCB table.

RECV Message ID, message length, Address of variable.
and index to PCB table.

Tab. 3.1: Attribute representation summary.

the details of the received message including message identi er, essage
length, and data. Local and external communication is discussed later
in section 3.4. The address of a variable that stores the message data, is

stored in the attribute eld.

The di erent representations of the attribute types in the transi tion structure

are summarised in Table 3.1.

ROM or RAM

Constant data are not changed during run-time. This can be implemente
in C by using the const qualier. The const attribute allows a C compiler
to place the constant data in ROM. The transitions  (which is an array of
transitions representing the net) is not changed during run-time therefore it is
more memory e cient to store it in ROM. Because transitions is constant
variable, it must be initialised pre-run-time. The marking (which is a bit-set
representing the current marking of the net) can be be changed dung run-
time, so it must be stored in RAM. The marking is de ned as a usual variable

in C.
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Example

We use a modi ed version of the ow regulator example introduced in Chapter 2.
We add atrap-exit and a casestatement to the example in order to have all type
of guards in the net representation. Additionally, the code from this example is
generated for a single-node architecture, which means that both thélow and
Valve process run on the same node and communicate via a local channel. The
aim of this example is not to describe a realistic system, but to genate a small-
sized transition table that demonstrates the data structures of a net Fig 3.9
shows the CANDLE program of the example. The procesd/alve is modied
to raise the exception ALARMvhen the ow rate exceeds some range. Testing
the ow rate is modelled using the case testFlow () statement. The function
testFlow () can return three values: 0, 1, and 2 representing the state of the
ow rate, low, high, or out-of-range respectively. The exception is handled by
reporting a suitable warning and moving to an idle state thereafter.

Flow | Valve
where

Flow =
every 10000 do
readSensor();
snd(k, FLOW, fFlow)
end every
Valve =
trap
when ALARM => reportWarning(); idle
in
loop do
rcv(k, FLOW, vFlow);
case testFlow()
when 0 => increaseFlow()
when 1 => decreaseFlow()
when 2 => exit ALARM
end case
end loop
end trap

Fig. 3.9: Modied ow regulator in CANDLE.
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The net representation of the example is shown in Fig. 3.10. In the gure
there are two nets, the top net represents thd-low process, and the bottom one
represents theValve process. The total number of transitions is 14, there is
one trigger (place) for one transition. The idle transition is repeated © simplify
the diagram. The places of the net are numbered to match their orderingn
the generated transition table where transitions are sorted by their atribute
type (in ascending order of transition number) as follows: send, resive, com-
putation, guard, and delay. This order is adopted primarily for the correctness
of the implementation (which is discussed in Chapter 4), and to impove the
performance of operations (the ISR in particular) that work with the tran sition

table.
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Fig. 3.10: Nets of the modi ed ow regulator example.

Fig. 3.11 shows the generated data structures of the example nets andéhnitial
marking. There is a bit-set representing the current marking of the nets. The
transition table comprises 14 transition structures representingthe transitions
of the nets. The NCB table comprises three blocks: one associated wiieach of

the processesklow and Valve, and one associated with the idle process, which
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executes when no other process has a computation ready to executehd@ PCB
table has one block because there is one port connected to a single lochbannel.
The ECB table consists of three blocks similarly to the NCB table. There is

only one delay transition in the nets so the timer table has one soft tiner.

3.3.2 Overview of ISR Implementation

The state of a net is evolved (changed) according to two rules, the preess tran-
sition rule R:1 and the network transition rule R:2 introduced in section 2.4.2.
R:1 can modify both marking of the net and the data state, whereask:2 can
only modify the network state. We assume that the behaviour de ned by R:2
is handled by the CAN controller. Therefore, only operations requiredby R:1

are considered for implementation in the ISR.

The ISR is con gured to run periodically. The ISR updates the marking of a
net according to the attribute type of a transition. The ISR implements the
behaviour of the net as it is de ned in the rule R:1. Algorithm 1 shows the
pseudo code of the ISR. First, all active soft timers are updated in ader to
track the elapsed time. Next, the ISR polls all external receive buers to record
new arrived messages. If a message arrives after this step is compldtéhen it
will only be considered in the next invocation of the ISR. After that, all local
communication bu ers are marked as stale (or reset). This ensures thatany
local message transmitted in the previous invocation of ISR will not beavailable
again for reception in the current ISR. Then, the ISR reacts to all marked places
in the net. In this step, a new marking of the net is obtained by rin g all ready
transitions. This step is repeated until the marking of the net becomes stable.
This means that all ready instantaneous primitives (actions) are exected in
the current ISR. However, in the rst iteration of this loop, all ext ernal receive
bu ers are marked as stale. It means that any external message received at

the beginning of the current ISR, will not be available again for recepton in
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next iteration, otherwise the ISR could enter an in nite loop. After that, one
or more ready computations are scheduled to run during the next tick interval.
Finally, the ISR makes all external messages ready for transmission ju¥efore
it returns. In this step, the messages in the external transmit buers become

ready for transmission.

Update soft timers;
Update external port control blocks;
Mark all local port control blocks as stale;

repeat
savedMarking  marking ;
foreach marked placei do
| marking  React(i);
end
if First iteration then
| Mark all external port control blocks as stale;
end

until savedMarking = marking ;

Schedule next computation(s);
Flag external transmit bu ers;

return .
Algorithm 1 : Pseudo code of the ISR.

The ISR reacts to a marked place according to the attribute type of thetran-
sition of which the place is the trigger. When the operation is completd, the
current marking of the net is updated, and the system state (repreented by
the current values of NCBs, PCBs, ECBs) is modi ed. The pseudo cde of
the React operation is presented in Algorithm 2. When the condition of a par-
ticular attribute is satis ed, the transition is red by executin g the operation
Fire and so the current marking of the net is updated. The pseudo code of
Fire is shown in Algorithm 3. The operation consists of three steps: remove
the source placep from the current marking, remove the vulnerable places
transitions [p]:vulnerable from the current marking, and add the target places

transitions [p]:target to the current marking.
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Input : A transition trigger, p.
Output : Updated marking and system state.
switch transitions[p].type do

case IDLE
| Skip;
end
case COMPT
if computation is ready and not completed then Skip;
else if computation is completed then Fire(p);
else if computation is not ready then Mark as ready;
end
case DELAY
if timer is active then
if timer is expired then
Fire(p);
Make timer inactive;
end
end
else if timer is inactive then
Load a delay value to timer;
Make timer active;
end
end
case EXIT
Raise the corresponding exception in ECB;
Fire(p);
end
case GFUN
if Function result in corresponding NCB = guard value then
| Fire(p);
end
end
case GVAR
if The variable value = guard value then
| Fire(p);
end
end
case GEXP
if The exception is raised in corresponding ECB then
Clear the exception ag in corresponding ECB,;
‘ Fire(p);
end
end
case SEND
if External channel then
Write message details to an external transmit bu er;
‘ Fire(p);
end
else if Local channel then
Write message details to corresponding PCB;
‘ Fire(p);
end
end
case RECV
if Fresh message available in corresponding PCBthen
if message id is matchedthen
copy the message content to a user data variable;
‘ Fire(p);
end
end
end
end
return

Algorithm 2 : Pseudo code oReact.
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Input : A transition trigger, p and the current marking, marking of the net.
Output : New marking, marking ° of the net.

marking °= marking n(fpg[ transitions [p]:vulnerable) [ transitions [p]:target

return _ ,
Algorithm 3 : Pseudo code ofire .

3.4 Implementation of Channel

A channel is an abstraction of the CAN protocol through which processes com
municate via asynchronously broadcast messages. All communications beden
system components occur through this mechanism and never through these
of shared variables. A message is identi ed with the pair {d; val). The id is the
message identi er which corresponds to the message priority in CAN. Tl val

is the value of the message which represents the data eld of the CAN &me.

bCANDLE processes can be allocated to a number of nodes which are conted
by one or more CAN buses. The allocation of processes determines the jie-
mentation of channels. When the proces® communicates with the processB
by the channel k and both A and B are allocated to the same node, therk is
usually mapped to alocal channel In contrast, when A and B are allocated to
two separate nodes, therk is mapped to anexternal channel Fig. 3.12 shows
four examples of the possible process-to-node mapping. In the caagthe pro-
cessesP 1, P2 and P3 are completely distributed, so they must communicate
using an external channel. In the caseb, all processes share the same node,
therefore a local channel must be used for communication. In the case the
processP 1 and P2 are allocated to the same node, whereas the proceBs3 is
allocated to another node. The processes, in this scenario, must canunicate
by using an external channel since there is at least one process tha allocated
to a separate node. In this particular case, althoughP 1 and P2 are allocated to
the same node, the communication between the two processes ocsuhrough
an external channel. This requires that the communication controller has the

ability to be con gured for a self-reception in which a transmitted message can
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be received by the same node. For example, the CAN controller of Philis
LPC2294 supports this feature. Finally, the cased shows that the processes
P1,P2,P3, and P4 are allocated to the same node, then they must use a local
channel for communication. However, the proces®5 is allocated to a separate

node, then P5 and P4 must communicate using an external channel.

External Channel

(b)

Local Channel

External Channel

(d)

Local Channel

External Channel

Fig. 3.12: Processes-to-nodes mapping.

Two ways of implementing a channel are introduced: external chanel and local

channel. We use a simple send/receive example to demonstrate that di erent
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implementations of channels. In the example, procesB 1 broadcasts a message
(i; var 1) through the channelk and idles thereafter. The process 2 is pending
on channelk until it receives a message with the identi er i. The content of
the message is held in the variablesar2. Fig. 3.13 shows bCANDLE model of

the example, and Fig. 3.14 shows the net representation of the model.

P1 | P2

where

P1 = kli.varl ; idle
P2 = k?i.var2 ; idle

network
k = (i pri, Ib, ub, IB, uB)

data varl, var2

Fig. 3.13: The bCANDLE model of simple send/receive example.

( : ) kli.varl idle "

Fig. 3.14: The Net of simple send/receive example.

) O

3.4.1 External Channel

When the communicating processP1 and P2 are allocated to two separate
nodes, then the channelk must be mapped onto a physical communication
link. The processor delegates responsibility for the communicatiorto an ex-
ternal CAN controller. Fig. 3.15 illustrates the structure of a communication
between processeP 1 and P2. When kli:var 1 of the processP 1 is marked and
ready to run, the ISR writes the message content held in the variablevarl to
a CAN transmit buer. The ISR then sets a ag transmit _flag to indicate
that the message is available for transmission. On the receiving nodeéNhen

k?i:var 2 of P2 is marked and ready to run, the ISR polls a ag receive_flag
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to check the arrival of the message. This occurs periodically untithe intended
message arrives. When a message is received with the identi &y then the ISR
reads a CAN receive bu er and assigns the message content to the variablear 2

of the processP 2.

P1 P2
varl var 2
I:l transmit ag receive ag I:l §
canWrite (var 1) . CAN bus . - canRead(var 2)
] CAN transmit | »| CAN receive -
bu er bu er
ISR ISR

Fig. 3.15: P1 communicates with P2 by external channel.

3.4.2 Local Channel

If the processP 1 and P2 are allocated to the same computing node, then the
channelk is mapped onto a local channel. Wherk!i:var 1 of the processP 1 and
k?i:var 2 of P2 are both marked and ready to run, the memory address o¥ar1
and var2 are passed to the ISR. The ISR then copies the value ofarl to var2
provided both the source and destination message identi ers are matactd, see
Fig. 3.16. The current example has only one receiver process. Howevavhen
there are a number of receiver processes, the ISR will provideaeh receiver a

copy of the value of the sent message at the same time.

3.5 Representation of the Architecture

The code generator requires information about the architecture of the recution
platform in order to produce the code correctly. This includes irformation

about processes, nodes, process-to-node allocation, schedulialgorithm, tick
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Fig. 3.16: P1 communicates with P2 by local channel.

rate, and communication details (e.g, network transmission rate and mesge
identi ers). In the current work, a special-adopted le formatis u sed to describe
the architecture of a system. The adopted language has a simple textualystax

but allows to specify all details which are necessary for the code geration.

Fig.3.17 shows an example of a con guration le created for the ow regulator
example. The system consists of two computing nodedlow and valve . The
processFlow is allocated to the nodeflow and Valve is allocated to the node
valve . The rst node uses 32 bits word size, has 1000sec tick rate, employs
a simple round-robin scheduling algorithm, and de nes a single extaal com-
munication port. There is a separate section to de ne processes. Fanstance,
the processFlow allows 20 words at maximum for the stack size and de nes
one channelk mapped to the communication port CANJ. Additionally, there
is a section to describe the communication channels. The section des the
transmission rate and messages exchanged between the system compogent
For instance, in the example shown in Fig 3.17, the transmission rate iset at
100kbit=s. Messages with the identi er FLOVdre used for communications, and

the size of the data eld of a message is only 1 byte.

There is however an industry standard language to specify a system ahnitec-
ture. The Architecture Analysis and Design Language (AADL) (Feiler et al.,
2006) can be used to describe the execution platform of the generated cade

The language has both a textual and a graphical representation. The AADL
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node flow
wordsize : 32
tickHz 1 1000

processes : Flow
scheduler : ROUND_ROBIN
ports : CAN_O

process Flow
stacksize : 20
channels : k -> CAN_O

node valve
wordsize : 32
tickHz : 1000

processes : Valve
scheduler : ROUND_ROBIN
ports : CAN_O
process Valve
stacksize : 20
channels : k -> CAN_O
channel k

bps : 100000
messages : <FLOW:1>

Fig. 3.17: The architecture description of the ow regulator example.

comprises elements to specify software componentsidta, thread, processand
subprogram), hardware components flevice memory, bus and processor) and

composition (system)).

Fig. 3.18 shows the AADL representation of the ow regulator example. The
processed-low and Valve are bound to the nodesflow and valve respectively.
The channelk is an external channel and therefore it is bound to the physical
CAN bus CAND. We use thesystem element to represent a channel. This ele-
ment is abstract and can be mapped to a software or to a hardware component.

Therefore, it is suitable for specifying both external and local chamels.

The second example shown in Fig 3.19 presents another con guration for
ow regulator example. The processes~low and Valve are bound to the same
node flow valve. The channel k is local channel and so it is bound to a

memoryelement which represents the local communication.
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Actual _Processor_Binding
ow € Flow

Actual _Processor_Binding
valve <€ Valve

CAN _0

L

\ Channel _Binding

Fig. 3.18: The AADL of the ow regulator example (distributed architecture).

Actual _Processor_Binding Elow

ow-valve

Actual _Processor_Binding Valve

Channel _Binding
LOCAL _DATA [€ k

Fig. 3.19: The AADL of the ow regulator example (single-node architecture).

AADL has built-in properties to provide information about system components.
A property has a name, type, and an associated value. For instance, the pp-
erty Actual _Processor.Binding allows to bind a process to a processor compo-
nent. Interestingly, the language permits de ning new properties This feature
is very useful in specifying other system information of node compaents (e.qg,
word size, scheduling algorithm, tick rate), process components tack size and

channel binding), and channel components (e.g, transmission rate and rseage
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identi ers). This can be a subject of future work.

3.6 Summary

The CANDLE code generator has been introduced in this chapter. Execuble
code is derived from a net which is the intermediate model of a CANDLESys-
tem. Our implementation model to execute the net has been preséed. An
e cient C representation of the net has been designed. The implemastation
of broadcast channels has been described. Finally, an AADL-like language has
been adopted to describe the system architecture including nosk, processes
and channels. The approach taken simpli es the process of reasoning abbthe
relationship between generated formal model and its implementationpecause
both the model and code are derived from the same net. The main point ofttis
chapter is to generate executable code for CAN-based distributed endulded
systems in a way that guarantees that both functional and timing properties
expressed in a high-level formal language are satis ed. Chapter 4 prests a
rigorous argument demonstrating that a generated formal model is a conser-
vative approximation of its implementation. Chapter 6 demonstrates that the
approach adopted provides an e cient implementation. To the best of our
knowledge, this is the rst work to apply such a method to the implementation

of distributed embedded systems.



4. CORRECTNESS OF SYSTEM
IMPLEMENTATION

4.1 Introduction

The main goal of this work is to produce a method for the development of CAN-
based embedded systems that provides both for the generation of reasorigb
e cient system implementations and also formal models that conservatvely
approximate their implementations; both components are to be generate auto-
matically from the same system description. This chapter addressethe imple-
mentation and modelling decisions that have been made to ensure thanodels

conservatively approximate their implementations.

We have adopted the time-triggered implementation model which has ken
described in Chapter 3. According to the implementation model, all nstanta-
neous primitives are assumed to run inside the ISR. Computation prinitives
however are assumed to run outside the ISR. In this chapter, we d@iss the
correctness of the implementation of each primitive. An informal argumet has
been used to demonstrate that the implementation satis es the sematics of its
model. The reason for this approach is that the target implementation langage
(which is C) lacks a formal semantics. Although there have been many agmpts
to provide a formal semantics to C, for example recently in (Ellisonand Rosu,
2012), the validation of the translation from C to a low-level machine language

is very important to ensure that the C compiler generates an executald code
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that behaves exactly as speci ed by the semantics of the source programA
rigorous solution to this problem is not trivial. The problem has been addessed
in the CompCert project (CompCert, 2012) and the results have been exten-
sively published, for instance (Blazy, 2008; Dargaye, 2009; Leroy, 2009; Blazy
and Leroy, 2009; Bedin et al., 2012).

The chapter is organised as follows. Sections 4.2, 4.3, 4.4 and 4.5 discusg th
modelling and implementation decisions made to ensure the correness of the
formal language primitives, including computation, guard evaluation, mesage
reception, and message transmission respectively. Section 4.6 disses the cor-
rectness of the process combinators (sequential composition, chojdaterrupt,

and parallel composition). Finally, section 4.7 concludes the chapter.

4.2 Computation Release and Termination

In this section we consider how to calculate lower and upper execign time
bounds for the models of computations released by a proces&sthat is assumed
to be the only user process allocated to its node. The bounds are cailated to
ensure that the model is a conservative approximation of the implemstation.
We begin by distinguishing between the sets obbservablecomputations, O,
e.g. computations that interact with the environment, perhaps by readng from
a sensor or writing to an actuator, and internal (unobservable) computations,
I, that merely update the local data state without interacting with th e envi-
ronment. We assume the set of all computationsC= O[l and O\l = ;.

The construction of models for internal computations is considered 1st.

4.2.1 Internal Computations

Fig. 4.1 shows the implementation structure and its related model ér a process

fragment given by P = :::C1(); C2(); :::, whereCy;C2 211 .
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T+ Cs

S

T Cs

R Bl |

1 2 3

Fig. 4.1: Internal computation bounds (we(Cq) <= )
[C1:T Cs;T+Cs[;[C2: T Cs;T+ Cgsl.

The worst-case (resp. best-case) execution time of a computatio@ is denoted
we(C) (resp. bgC)). We assume in the case of both computationsC; and
C, that their worst-case execution times are no greater than the length of a
computation interval. Hence we can be sure that their actual execution imes,
e, and e, respectively, are within the computation time available in one tick, i.e.
e <= ande <= . Notice that the model [C;: T Cs;T+ Cs];[Co: T
Cs; T+ Cg] allocates bounds enclosing a full tick interval to each computation
in order to account both for any idle time until the next tick and also th e time
taken for execution of the ISR. This is similar to the standard approach tken
to account for the time used by a tick scheduler in the response tira analysis
of xed priority systems, e.g. as described by Liu (Liu, 2000). Fig. 4.1 shws
the actual execution time as a shaded grey box and the upper bound on the
extended time as a dashed box. The lower and upper bounds are chosea s
that the model contains behaviours that include successive reaatn instants
1 and 5 in which 1 occurs at the end of the rst ISR and 5 occurs at the
beginning of the second ISR (lower bound:T  Cs), and, conversely, ; occurs
at the beginning of the rst ISR and , occurs at the end of the second ISR
(upper bound: T + Cs). Therefore, we can be sure that the model contains
all possible behaviours of the implementation. In the case that a comptation
requires more than one tick to complete, the bounds on its completioniime are
calculated accordingly. Fig. 4.2 illustrates a computation requiring nmore than

one tick to complete and shows its associated model. Once again, the bads
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calculated give rise to a non-deterministic model that allows the mtional time

of a reaction instant to occur at any point within an ISR.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 4.2: Internal computation bounds (we(Cy) > )
[C1:nT Cs;nT+Cs|;[C2:T Cs;T+ Cg].

4.2.2 Observable Computations

We assume that all observable computations complete their execution whin a
single computation interval. Even so, the model of an observable computébn is
a little trickier to construct than that of an internal computation, si nce we need
to consider its termination not only with regard to the time of the next reaction
instant but also with regard to the time of its interaction with the en vironment.
Fig. 4.3 shows the implementation structure and its related model ér a process
fragment given by P = :::C1(); C2(); :::, whereC, 20 and C, 21 .

T+ Cs

b

T Cs

L0 1 =« 1

be(C1) we(C1)

Fig. 4.3: Observable computation bounds C120;C, 21 )

([C1: bgCq);we(Cq)];idle[> [T Cs;T+Cgs]);[C2: T Cs;T+Cs].
The associated model is constructed to capture both the actual terrmation
time of C4, since it may be observed by the environment, and also the e ectig
termination time of C; in so far as it causes the release of, at the next
reaction instant. The rst part is modelled by [ C; : bgCq); we(Cy)]; idle, i.e.

C; actually terminates, and may be observed, at some time between its k¢
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case and worst-case execution times; then the idle computation exetas until
the next reaction instant. The timing of the next reaction instant is within
the usual bounds for a computation executed within one tick period andis
modelled by the interruption of the idle computation by a non-deterministic
timeout, [T Cs;T + Cs], whose termination allows the release oC,. So the

complete model in this case is

([C1: bgCq);we(Cy)];idle [> [T Cs; T+ Cs]);[C2: T Cs;T+ Cg]

and, in general, the model of any observable computatiorC is just

(IC : bgC);we(C)J;idle [> [T Cs;T+ Cs))

4.2.3 Delay

Explicit delays are introduced into system descriptions usimg the elaps€ < timeSpec>)
statement, where timeSpec is a time speci cation, e.g. seconds(5) millisec-
onds(10) etc. The code-generator convertdimeSpecinto a number of ticks and
the model-generator generates a model in which thelapsestatement is repre-
sented as an internal computation that implements the identity operation in a

time whose bounds are calculated as in section 4.2.1.

For example, consider the implementation of the statementlapse(microseconds(5500))
on a node with a tick period T = 2 ms. The time speci cation is converted

into a number of ticks as follows:

: 10 ©
microsecondg45500) = % =3

and the delay is modelled as [B Cs; 3T + Cs], as shown in Fig. 4.4.

Notice that if the requested delay is not a multiple of the tick period, the

implementation provides a delay that is close to the least multipke of the tick
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Fig. 4.4: Delay bounds (lapsg microsecond45500)); T =2 ms
; [3T  Cs;3T + Cs].

period greater than the requested delay. The generated model repsents this.

4.2.4 Response-Time Analysis

We must be able to perform an o ine calculation of the bounds on the respong
time of all computations for any chosen scheduling algorithm in order to gen
erate a model. In the case of a computationC, released by a cooperatively
scheduled process, we know that it will complete within one tickand so its model
isgivensimplyasC: T Cs; T+ Cg], as illustrated in Fig. 4.1. Computations
that cannot be scheduled in a single tick are calledong-running computations
and are scheduled using a weighted round-robin algorithm. The remainer of

this section considers how to calculate the bounds on such computatian

The number of ticks required to provide e time units of execution for a long-

running computation is given by

(e = — (4.1)

r

where | is the length of time allocated for the execution of round-robin pro-
cesses in each tick period, i.e. in the hybrid scheduling algofiitm the length of

a round-robin slot is given by |,

robin scheduler, a computation of lengthe; released by proces®; will require a
number of rounds given byd%e, wheres; gives the weight of P; equal to the

number of round-robin slots allocated to it in a complete round of the sbedule.
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For example, let the set of processes and their weights be as follows:

f(P1;1); (P2; 2); (P3; 3); (P4; 4)g

Then every round is of length 10 and in each round a process is allocated a

number of slots according to its weight. A round in this case would be

P1; P2; P2; P3; P3; P3; Pa; Pa; Pa; Py;

and processP3, for example, would have 3, time units allocated to it in every

round for the execution of its long-running computations.

Worst-case response time

The worst case response time for a long-running computatiorC;, released by
processP;, occurs whenC; is released just as the scheduler is about to schedule
Pi+1 for the rst time in this round, i.e. when P; must wait for all other
processes to use their full allocation and for its slot in the next romd to arrive

before it can begin execution.

From this we conclude that the number of ticks required in the worst case to
complete a long-running computation of length e, released byP;, in a round

of length R is given by

nt(e) nt(e)
Si Si

wt(e)= R si nt(e) (4.2)
The term on the left of the minus sign gives the number of rounds requied for
the computation multiplied by the length of a round. The term on the ri ght

compensates for any over-allocation of slots computed by the rst term.

For example, assume the same set of processes and weights as in the exkEmp

above and a round-robin allocation , = 500 time units. Now, assume that
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processP; releases a computation with a worst-case execution time of 1800 time
units. This will require d%’ez 4 ticks which it will receive in d%‘ez 2 rounds.
Each round is of length 10, so we can say that the computation will complete
in no more than 20 ticks. Actually, in 2 rounds P3 will receive 6 ticks, i.e. 2
ticks more than needed for this computation. So, in fact, the computationwill

complete in 18 ticks, as given by equation 4.2.

Having calculated the number of ticks required in the worst case for he com-
pletion of a computation, C;, the worst-case response time of; is given simply

by the product of this value and the length of the tick period.

W(Ci) =T wt(we(Ci)) (4.3)

Best-case response time

In the best case the scheduler will be just about to schedul®; for the rst time
in this round, so it will not be necessary forP; to wait for the rest of the round
to begin its slot. This gives us a formula for the number of ticks requred in the
best case to complete a long-running computation of lengtte, released byP;,

in a round of length R:

bt(e) = wt(e) Sj (4.4)
j2f 1;::ngnfig

So the number of ticks required in the best case is the just the nmber of ticks
required in the worst case minus the number of ticks required for he rest of
the round, i.e. the number of ticks allocated to all processes exp¢ P;. The

best-case response time of a computatio; is then given by

B(Ci)= T bt(bgC;)) (4.5)
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4.3 Guard Evaluation

A guard is the name of a predicate evaluated in the current data environnent
which gives a value eithertrue or false There are two ways in which a guard can
arise. First, in the CANDLE statement case, the result of a function call (or
the value of a variable) is compared with a number of constant values. Send,
an exception is raised when the exit statement is executed in thérap  exit

statement. In each case the guard is handled (evaluated) inside the FSwhich
is performed as a simple test of one value (the result of the evaluationjvith

another (e.g, a particular case expression value). The evaluation of a pdécate
for a function call occurs as a computation executed outside the ISR. fien the
ISR compares the result of the computation with a simple value. In thecase
of exception, a ag is set inside the ISR to raise an exception. Thenhe ISR

performs a simple test to see whether an exception ag is set or not.

4.4 Message Reception

Particular care needs to be taken to ensure that the generated modekia con-
servative approximation of its implementation in the case of message reption.

There are three main requirements:

1. to ensure that there is an adequate number of receive bu ers to sta
messages transmitted between polling operations so that messages are

not lost;

2. toidentify precisely when a node is marked as ready for message egtion

and to account for the time between polling operations; and nally

3. to identify the order of message receptions at di erent CAN controlle's

in gateway nodes.
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4.4.1 Receive Buers

If there are n receive bu ers in a CAN transceiver then

1. there should be no more thanmn possible acceptances in any interval that

is no longer thanT + Cs, and

2. the receive bu ers should be ushed at each reaction in the ISR.

These requirements ensure that

1. messages are not lost, and

2. the time to react to a message is properly accounted for.

4.4.2 Reception Readiness

Fig. 4.5 illustrates the di culty in ensuring that messages are receved only
when a node is clearly ready for their reception, according to the smantics
of the model. The gure shows the behaviour of a node with a single pcess
executing the process fragment:: Cy(); rev(k;i; x); C2() :::, in three di erent
scenarios for the transmission of a messagse on the CAN bus. The questions
are in which of the scenarios should the message be received and how It

timing of the reception modelled.

First, remember in our time-triggered implementation model, CAN messages
are polled in each ISR. This is the only opportunity for message receptin in an
implementation. AtISR 2 in Fig. 4.5, a message will be available for regation in
scenarios Bus (1) and Bus (2). However, in the former case, the actual ezation

of computation C; will not have completed before the message acceptance point
occurs, and so clearly message receptidfi:x cannot be enabled in time; and
in the latter case, although the actual execution of C; will have completed

before the message acceptance point, its model represents its temation as
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‘ T+ Cs .
Node I Cl H C2 4>
______________ ;)._.
Bus (1) 1 k2:x (rejected)
Bus (2) 4 (rejected)
Bus (3) 2 (accepted)

Fig. 4.5: Message reception'( denotes the message acceptance point)
[C1:T Cs;T+Cs[;k?i:x;[0;T+ Cs];[Co: T Cs;T+ Cg].
occurring at the reaction instant in ISR 2, and again k?i:x is enabled after the
message acceptance point. So, in both of these scenarios, the semanticghaf
model requires that the message should not be received. In scenarfus (3),
the reaction instant at ISR 2, when k?i:x is enabled, is clearly not later than
the message acceptance point. In this case, the message should be nemiat

ISR 3 and computation C, will be released in the next computation interval.

It is clear that, at ISR 3, the model needs to allow for the message acceahce
to have occurred at any time between the reaction instants at ISR 2 andSR 3.
It is not possible to tell, a priori, precisely when the message ac@tance point
will occur. Hence, the inclusion in the model of the non-determitistic delay

[0;T + Cg].

The approach taken to ensure that the implementation corresponds withthe
semantics of the model is to order the transition table so that receie transitions
are considered rst (before computation terminations) and, after the rst pass
through the reaction loop, external messages are marked as “stale', i.eo tonger
available for reception in the current reaction. Following this procedure, it can
be seen that a message will not be received in scenarios Bus (1) and Bug) (

but that a message will be received in scenario Bus (3).
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4.4.3 Reception Order

A node may be con gured with a number of di erent CAN controllers. Th is
could happen in gateway nodes. Fig. 4.6 shows the behaviour of a gateway

node with a single process executing the process fragment

Ki?i1:X;[0; T+ Cs]; [C1: T Cs;T+ Cg]

+

ko?i2:y;[0;T+ Cs]; [C2o: T Cs;T+ Cs]

and two messages from two di erent CAN buses arrive in the same interal.
According to the model both k17i1:x and k»7?i,.y are enabled. So if the message
i1 is received rst then the computation C; is released andk,7i,:y is disabled.
However, if the message; is received rst then the computation C; is released
and k;?i1:x is disabled. When the acceptance point of the messages occurs in
the same interval, then both messageé; and i» become available for reception.
The di culty in the implementation is to determine which message should be

polled rst inside the ISR. There are three possible cases to conder:

1. both channels are external,
2. one channel is external and one is local,

3. and, both channels are local.

A possible solution to the rst case can be achieved by using CAN contrdérs
that provide a time stamp on received and transmitted messages (e.g,Téxas-
Instruments, 2005)). When the received messages are time stamped,h the
ISR can identify the order of message receptions and update the transdns

table accordingly.

For the second case, the order of message receptions is ensured by ti&RI

implementation. The ISR polls the external receive bu er(s) and updates any
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ready receive transition before checking the local communicationsTherefore,
if a message acceptance occurs during the previous interval, the RSconsiders
that the external message arrives rst. However, if the message accephce
occurs after the beginning of the ISR, then the local message will beonsidered

rst and the external message will not be processed until the next SR runs.

In the third case, the order of message receptions is resolved non-@eministically.
Local communication occurs inside the ISR where the transmission andecep-

tion of a message are assumed to happen instantaneously. Therefore, any erd
is chosen in the implementation would be acceptable since the modean express

both behaviours.

‘ T+ Cs .
Node E Cy H
Bus (1) k1?| 1:X
Bus (2) A

Fig. 4.6: Example of message reception in a gateway node.

Receive with Interrupt Operator

Consider the following process fragment:

k?2i:x;[0; T + Cs|;[Cy:t] [> [Timer :t];[Cs: ]

The new data value of the variablex only becomes available after [OT + Cs]
is completed. According to the semantics of the interrupt operator, he rst
argument may be interrupted at any instant once it is enabled. If it is inter-
rupted just before [0; T + Cs] begins, then the new state ofx must be visible
based on the semantics ok?i:x. However, the [Timer :t] is a time delay and
is only evaluated inside the ISR. The message is received and the valile is

updated inside the ISR as well. If we ensure this happen before evating the
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timer, then any other primitive will see the new state of the variable after it
is updated. So the termk?i:x;[0; T + Cs] behaves atomically to the second

argument of the interrupt operator.

Similarly if a guard < > appears in the second argument. In this case,
we have to ensure also the guard evaluation is performed after the memge is

completely received inside the ISR.

Moreover, a message reception may appear in the second argument. Themee
two possibilities: the two receive statements read from the samehannel, or the

two receive statements read from two di erent channels.

For the rst case, one can consider the following example:

kK?2iLx;[0;T + Cs];[Cy:t] [> k?i2y;[0;T + Cs];[Co : t]

Now, if the channelk is local, then the evaluation of the two ready receive state-
ments can be performed non-deterministically because the local camunication

occurs instantaneously inside the ISR.

When the channelk is external, the evaluation is performed as follows. Ifil-
message is received befori2-message, then the ISR polldl and updates x
before processing2. This can be guaranteed by the employed CAN controller.
For example, Motorola msCANO8 utilises a double receive bu ers. The icom-
ing messages are stored in a two stage input FIFO (MC68HCO08, 2012). The rst
received message is stored infreground bu er and so it becomes available for
a polling software component. The second received message is storedaiback-
ground bu er and it only becomes available once the foreground bu er is read.
Therefore, oncek?i1:x is started, it can only be interrupted after [0; T + Cs]
is completed. On the other hand, wheni2-message is received rst, then the
ISR polls i2 and updatesy before processingl. Sok?i1l:x is interrupted be-

fore it begins. Consequentlyk?i1:x;[0; T + Cs] is either executed at once or
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interrupted before it is started, i.e. the term behaves atomicaly to the second

argument of the interrupt operator.

In the second case, one can consider the following example:

k17A1:x;[0; T + Cs];[Cq :t] [> k2742y;[0; T + Cs];[C5 : t]

The evaluation of the message reception is resolved in a way that is sitar to

the order of message reception discussed in section 4.4.3.

4.5 Message Transmission

According to our implementation model, transmission of a message is itiated
inside the ISR which is assumed to happen instantaneously. In thisection
we discuss two issues that could a ect the implementation correctess of the

message transmission.

45.1 Transmission Readiness

The implementation requires a non-zero time before a message becosneady
for transmission. If the channel is external, the ISR accommodates th message
contents for any active kli:x transition in an available transmitter bu er. Then

it clears a transmitter ag to indicate that the message is ready for transmission
and res the transitions. When the channel is local, the ISR transfes the mes-
sage contents of any activek!i:x transition into an intermediate bu er and then
res the transitions. The operation of message transmission may be compted

at any instant in between the beginning and the end of the ISR.

If we assume that the message is enqueued for external transmission atet
beginning of the ISR, then the model may exhibit a behaviour whee a message

is enqueued and the bus is free. In this case the message can be traftsaa
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without contention for the bus. In practice, the message may be enqued
at any instant up to the end of the ISR. The problem is that the bus could
be occupied by another message and so the message has to wait until thesbu
becomes free again. Therefore, this possible behaviour of the implemtation is
not expressed in the model. Similarly if we assume that the message énqueued
at the end the ISR, then it is possible to nd a case where the implenentation

exhibits a behaviour that is not expressed in the model.

The problem is that the message is allowed to be enqueued at any moment
during the ISR time. If this is prevented, then the implementation would only
have the same behaviour. To resolve this problem, the ISR should acenmodate
the message contents in the transmitter bu er and clear the transmitter ag
just before the ISR terminates. Then the message can only contend fohte bus

at the end the ISR.

When the message is enqueued for local transmission, the two assunmris
of the ISR can be considered. Communications using the local channelre
instantaneous, i.e. the message is enqueued, transmitted and reged in the
same instant. In practice, the local communications happen inside th ISR.
The e ect of executing the send statement is not visible outside he ISR except
transmitting to an external channel and a computation release. In otherwords,
the only visible actions that result from executing the ISR are senihg a message
to an external channel and releasing a computation. Based on that, the lcad
communication can be safely assumed to happen either at the beginning tifie

ISR or at the end of the ISR.

In the following we discuss a problem that may arise when multiplesend state-

ments become ready for execution at the same instant.
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4.5.2 Multiple Ready Transmissions

Consider the following process fragment:

(kli:x;idle) j (klj:y;idle) j (k?i:z; [Cq : t] + k7w ; [Ca : t])

Three processes are composed using the parallel operator. The rst anthe
second process send messages with particular identi ers on the chael k. The
third process waits to receive a message and execute a particular cputation.
At some point, the rst and the second process may become ready for exation
simultaneously. According to the semantics of the send, the messageand |
are enqueued at the same instant for transmission. When the processare
allocated into the same node and the channek is local, the two messages
should be sent and received at the same instant because the communiaat on
the local channel is assumed to happen instantaneously. The problens ithat if
the messagsé is received rst, then the messagg can not be received and vice
versa because of the choice operator in the third process. In other wds, the
given model exhibits two possible behaviours at the same time and t choice
between them can be made non-deterministically. However the imgimentation

has now a freedom to implement either one of the possible behaviour.

This problem does not arise when the processes are fully distritted on separate
nodes and communicate by an external channel. This is because transssion
on the external bus consumes a time and the highest priority message Wbe
selected for transmission once the arbitration on the bus begins betvemn the
nodes. For instance, if the messageis higher priority than j, then the message
i is transmitted rst. When the message is successfully receivedi.e. k?i:z is
executed, the computation [C1 : t] will then be ready to run and the second

term (k?j:w ;[C, : t]) of the third process will be disabled.

Another issue may arise if the rst and the second process are allocateto
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the same node, then it must be ensured that there are an adequate nunetp of
transmit bu ers to accommodate all the ready-to-transmit messages. Tke num-
ber of the transmit bu ers is a feature of the adopted platform. For example,
the Motorola msCAN controller has only three transmit bu ers (MC68HCO08,

2012). However, it is possible to bene t from the model that is generatedrom
the system description and use the model checking tool to ensurthat the im-

plementation never requires more than the available bu ers. Therdore, for a
particular platform, a design is either accepted or rejected. If thedesign is

rejected, the user can modify the design or use a di erent platform

4.6 Process Combinators

The bCANDLE modelling language has a set of control ow operators which
are sequential compaosition, choice, interrupt, and parallel compositn. These
operators are used to combine the language primitives in order to constrat a
system model. The code generator derives the system implemenian from the
net that is generated from the system model. So the implementationmplements
directly the ow control of the net. This means that the algorithm used to
control ow of the execution of the code is exactly the same algorithm that
controls the ow of the model. This algorithm is de ned by the net rul esR:1 and
R:2 discussed in Chapter 2. The rules are used to determine the nexharking
of the net. Because the code generator is based on the net implementati,
the control ow constructs are automatically correct i.e. they behave similarly
both in the model and in the generated code. As long as the primitives a
implemented correctly and the control ows are implemented corredly, then

the implementation behaviour should comply with the model behavbur.



4. Correctness of System Implementation 95

4.7 Summary

In this chapter we have discussed the modelling and the implemeation deci-
sions that we have made to ensure that the system model conservatilye ap-
proximates its implementation. The discussion has been presentefor each
primitive of the formal language, including the computation, guard evaluation,
message reception, and message transmission. Having correctly implented
the primitives and the the control ow of the system model, we conclude that
the behaviour of the system implementation complies with the behsiour of the

system model.



5. ATOMIC UPDATE OF DATA

As introduced in Chapter 2, a bCANDLE model of a system consists of basic
process terms such as: send a messagléx , receive a messag&?i:x, perform
a computation within a bounded period of time [! : t;;ty], and evaluate a
guard on the data environment . These terms may be compounded by a small
set of operators: sequential composition ;, choice +, interrupt $, and parallel
compositionj. The bCANDLE semantics assumes that computations complete
and update their data instantaneously and atomically on completion. In this
chapter, we discuss the problem concerning the implementation ofamputations
in which computations are vulnerable to interruption. First, the i mportance of
the interrupt operator in the bCANDLE is outlined in section 5.1. Then, a
problem that may arise when implementing a computation with the interrupt
operator is discussed in section 5.2. Next, other approaches that resolvée
problem are reviewed in section 5.3. After that, a number of methods are
proposed to work out the problem in section 5.4. The proposed methods are
evaluated in order to select those suitable for the implementation of he code

generator in section 5.5. Finally, section 5.6 concludes the chapter.

5.1 The Interrupt Operator

The bCANDLE statement P[> Q behaves asP until either Q performs an
action or P terminates. The bCANDLE interrupt operator allows time to pass
and network activity to occur in both arguments. It has the same semantts as

the interrupt operator of ET-LOTOS (Leonard and Leduc, 1997). The operator
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can be used to construct a model where the execution of a process céame
disabled when an event occurs (Nicollin and Sifakis, 1994). This allows @n
to state the responsiveness property of the system when it reacts aesponds
to environment events (Kesten and Pnueli, 1991). For exampleP[> ;Qis a
process that is allowed to behave aP as long as the termination action of does
not occur. can be a message receptiok?i:x, a time delay [timer : t], or guard
evaluation . If terminates (e.g: a message is received), theR is aborted
and Q begins its execution. The interrupt operator allows a very compact
representation of a system behaviour. To illustrate the process xpression:
(a1;az2;a3)[> (bi;b») may be recast without the interrupt operator. as is the
termination action of the rst argument, and by is the initial action of the second

argument. This can be accomplished using the choice operator as follows:

(b; o) + (ag; b bp) + (ag; a; by ) + (a1; a; as)

Fig 5.1 and 5.2 show two nets that are generated from the interrupt expession
and the choice expression respectively. It is clearly seen that urgg the interrupt
operator provides a more compact representation than the choice operatomi

realising the same behaviour.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 5.1: Net of the interrupt expression.



5. Atomic Update of Data 98

"
fffffffffffffff

|
,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,
1

Fig. 5.2: Net of the choice expression.

5.2 The problem of the Interrupt Operator

The bCANDLE semantics assumes that computations complete and update
their data instantaneously and atomically on completion. The bounded com-
putation [! : t1;ty] transforms the data state according to the speci cation
of the operation ! . The change to the data state must occur in a single in-
stantaneous action at the moment of termination. The computation may be
compounded with other primitives using the interrupt operator in one of the

following three forms:

[ :t1;to] [> [timer :t];S { timeout.
[' :ty;t2] [ k ?i:x; S { message reception.
[' :ty;t2] [ ! S {guard evaluation.

Computations are not allowed to be used as the second argument of the inter

rupt operator since they can change the data state. In other words, therés no
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possibility of interference in the interrupt operator such as in the parallel oper-
ator. The computation [timer : t] only consumes time and it does not change
the data state, therefore it can be used as second argument for the intaupt

operator. For example, assume the following bCANDLE expression:

[Computy : t1];idle[> [timer : t];[Comput; : t2]

[ ]isr

D Data update
. Comput 1
. Comput 2

Interrupt
point

' Incomplete
! data update !

Fig. 5.3: Interrupt problem.

In this expression the computation [Comput; : t1] is executed rst and time is
allowed to progress in the second argument. If the time expires in th time-
consuming computation fimer : t], the computation [Comput, : t2] starts
executing. If the timer expires in [timer :t] and the rst argument is in the idle
state, then [Comput, : t2] can begin executing using the previous data state
which will have been updated in Comput; : t1]. However, the timer may expire
at a point where [Comput; : t1] is updating some data state. This could happen
whent; >t. Then [Comput; : t1] will be interrupted and the control will be

given to [Comput; : t2]. The data state may be left partially modi ed because
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of the interruption, see Fig. 5.3. Therefore, special attention must ke taken to
implement the interrupt operator. All partial changes that may have hap pened
to the data state must be aborted at the point of interruption. Consequently, a

particular mechanism should be provided during the implementatbn to ensure
that incomplete computation leaves the data identical to the state bdore start
of the computation. This is a well-known problem in pre-emptive muti-tasking

systems where a number of tasks may have access to a “critical sect such
as a shared area of memory (read/write global variables) or an input/output
ports. In the next section, we review a number of methods and techiques to

resolve this problem.

5.3 Related Work

The problem discussed above is a known problem in the area of concemt
systems, and a number of solutions have been proposed. The most common-ap
proach is to use a kind of lock, known as aemaphore when accessing a shared
resource. A process locks a semaphore and then accesses the resauvehen it
nishes with the resource, it unlocks the semaphore. Any other pre@ess needing
access to the shared resource is forced to wait until it can acquire #hlock. Us-
ing a semaphore requires careful programming practice otherwise it ay raise a
number of problems. For instance, if one occurrence of a semaphore is dtad

or misplaced in a program, the entire program may collapse at run-time (Buns
and Wellings, 2001, p. 244). Furthermore, as the semaphore blocks a calling
process, a deadlock could occur, if semaphores access is not nestedrectly,
which in turn may lead to a software failure. Moreover, priority inv ersion (Mall,
2009) is another problem could happen because of using semaphores. In this
case, a high priority process may be blocked for an unbounded time imc-
cessing a shared resource that is locked by a low priority processin order

to avoid the priority inversion problem, priority inheritance prot ocols were de-
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veloped (Goodenough and Sha, 1988; Sha et al., 1990). Many real-time op-
erating system (RTOS) support this, such as VxWorks (WindRiver, 1999),
MicroC/OS-Il (Labrosse, 2002), and FreeRTOS (Barry, 2009). Additionally,
using semaphores is characterised by high memory requirements ke the
state (context) of each blocked process should be saved in memory. hlis a
large number of processes (perhaps more than 100) would lead to unacceptabl

memory usage (Poledna et al., 1996).

Alternatively, a lock-free approach was proposed by Herlihy and Moss inlKler-
lihy and Moss, 1993) by using “transactional memory' (TM). The concept of the
transaction rst emerged in the area of database management systems. TheN
approach is implemented in two ways: hardware TM (HTM) and software TM
(STM) approach. The HTM approach relies on hardware support to execute a
transaction may be used. The transaction is de ned as a set of operations that
are executed by a process satisfying “serializability' and "atomity' (Herlihy and
Moss, 1993). The rst term means that the steps of a transaction do not appear
to be interleaved with the steps of another transaction, so the tranaction seems
to execute serially. The second term means that when a transaction coptetes
a sequence of changes to shared places, it commits and then the changesdme
visible, or aborts and all changes are then discarded. The STM approach was
introduced in (Shavit and Touitou, 1997). It provides a software-basedimple-
mentation of memory transactions exploiting the increase in processarspeed.
The HTM approach provides better performance but it has architecture limi-
tations in addition to the cost of special purpose hardware for implemendtion.
The STM approach allows larger size of transactions but the implementatbns
su er from the overhead required to manage transactions (Mankin et al.,2009;

Cascaval et al., 2008).

Another approach however deals with the source of the problem rather than

providing a solution. In the co-operative scheduling approach of (Pont 2008b),



5. Atomic Update of Data 102

the problem does not arise because only one task is active at any time. A ths
runs to completion and can not be pre-empted by other tasks. As pre-entopn

is eliminated, the need for a mechanism to protect shared resourcafoes not
appear. Considering this approach requires re-design of the system brder to
satisfy the assumptions made by the approach such as the duration of tasks

must be less than the schedule tick interval (Pont, 2008b).

Additionally, some computer architectures provide some instructons that can
read and write memory locations atomically (can not be interrupted by inter-
rupts). For example, in the Motorola HCO8, the LDHX instruction can load
a 16-bit memory location to the index register (MC68HCO08, 2012). Similarly
STHX instruction can store the 16-bit index register in a memory location. FRur-
thermore, ARM processors have the Load/Store Multiple (LDM/ STM) instruc-
tion which can transfer multiple registers of 32-bit size between mmory and
the processor in a single instruction (Sloss et al., 2004). The main draidack
of using these instructions to update data is that they may increasethe inter-
rupt latency since they are not interrupted while executing. For example, LDM
requires (2 + Nt) cycles to complete execution, whereN is the number of reg-
isters to load andt is the number of cycles required for each sequential access
to memory (Sloss et al., 2004). Although a solution is proposed in (Maaita
and Pont, 2005) to reduce the impact of such instructions on the interrug, this
method is a hardware speci ¢ and is not appropriate if the data update sze is

large.

5.4 The Proposed Solution Ensuring Atomic

Update

In this section, we discuss a number of methods that ensure the atoitity of

data update. For each method, the worst-case response time of a computa-
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tion is calculated as the means of comparison. We adopt a traditional analysis
approach to calculate the response times. We identify the followinghree char-

acteristics to compare between the proposed methods:

1. ISR release jitter,
2. worst-case computation completion time,

3. ease of implementation.

Some of the methods could cause a delay to the next invocation of the F5
because of the way they implement the atomic update. This delay isaled ISR
release jitter. The problem with this delay is that it increases the worst-case
execution time of the ISR. The ISR execution time has been includa explicitly
in our analysis when we produce the lower/upper bound of computations as
discussed in Chapter 4. Therefore, the method that minimises thdSR release
jitter would yield better analysis (less pessimistic result). The completion time
of a computation expresses the time needed to execute the computati and to
update its data. Then, the method that yields a shorter worst-case comletion
time will be considered. The third criterion considers the mettod that is easier
to implement, i.e. the method that does not require more resource to be

implemented such as CPU time, memory, or hardware timers.

Additionally, the analysis provided in this work considers only a sirgle process
running on a single node, so all computations come from the same net. Whe
a number of processes are allocated to the same node, some computationay
have to run at the same time. We have discussed a number of schedud
approaches in Chapter 3. Each proposed method implements di erent apmach
to ensure the data update atomicity, so their e ciencies are di erent in each
case. However, when we add the consideration of multi-process to thaethods,

the additional process a ects all methods in the same way and the only ltanges
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occur to the computation times in a consistent way for all methods. These

changes do not assist to decide between the methods.

In the following, section 5.4.1 introduces the traditional analysis, am sec-

tion 5.4.2 proposes the atomic update methods.

5.4.1 Worst-Case Response Analysis

The exact analysis of Joseph and Pandya (Joseph and Pandya, 1986) calcu-
lated the worst-case execution time (response time) of a task in a syam with
pre-emptive task scheduler. The system behaviour is limited ¢ the following
computation model in order to do this kind of analysis. All tasks have pei-
ods. All deadlines are equal to these periods. All tasks are indeperdt and do
not communicate with each other. Finally, a task has a unique priority level
according to the rate monotonic policy in which the shorter the period the
higher the priority. The equation (Joseph and Pandya, 1986) below shows he

the worst-case response time can be computed iteratively:

+1 X R}
Rin =Ci+ T—' Cj (5.1)
gj2hp(i) *

Here are the de nition of the parameters in Equation (5.1):
Ci: worst-case computation time of taski.
T;: period of taski.
Ri: worst-case response time of task.
n: the current iteration number.

hp(i): a set of tasks of higher priority than task i. The
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Response Time Analysis with Release Jitter

Equation (5.1) assumes that there is no delay between the invocationite -
arrival time - of a task and release time - actual running time - of the task The
strict periodicity assumption now is relaxed. The following equation takes into

account the variable delay between the invocation and release time of task:

Xoowh+

Win+1=Ci+

C.
T: )
8j 2hp(i) J (5.2)

Ri = w; + J;
Here are the de nition of the parameters in the equation:

w;: worst-case response time of task once it has been released.

Ri: worst-case response time of task including the delay between invo-

cation and release.
n: the current iteration number.

Jj: is release jitter of a higher priority task j, the di erence between the

longest and shortest delay from invocation to release of the task.

5.4.2 Atomic Update Methods

In order to apply the traditional response time analysis on the atomic updte
methods, we employ the following assumptions. First, the ISR idreated as a
periodic task that runs with the highest priority level. The peri od of the ISR
is denoted by T, and the worst case computation time of the ISR is expressed
by Cs. Second, computations are considered to execute in the lower pridyi
level. A computation has a worst-case computation time expressed b¢;, and

the worst-case response time is denoted big;. The worst-case time required by
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a computation i to update its data state is represented byA;. The completion
time of the computation is expressed byr;. Third, all ready computations are
assumed to be released at the beginning of the ISR. This assumption caqolies
with the critical point assumption of the traditional analysis at which all sys-
tem components (tasks) are assumed to be released at the same time. Hoyt
the duration of the atomic update of a computation must be accommodated
within one tick interval: A; < (T  Cs). This is because a longer update op-
eration would lead to missing one tick and the track of the elapsed time as
consequence. However, a long atomic update of data could be split into mum-
ber of short operations by the programmer in a way that satis es the prevbus

constraint.

Then, for each method, we calculate the worst-case response time of am-
putation in the basic case that does not take into account the e ect that a
method has on the ISR release jitter or the time of the atomic update of daa.
Next, we calculate the computation response time by taking into accountonly
the ISR release jitter when presented. After that, we calculate the worst-case
completion time of the computation which includes the basic responséme and

the atomic update time.

Method(1): One-tick duration computation

Similarly to the TT approach (Pont, 2008b), when a computation completes in
one-tick time, then the data is guaranteed to be modi ed without int erference
of other computations. Fig. 5.4 shows two short sequential computationsThe
computation 1 and 2 are completed within one tick interval. When the r st
computation updates data before completion, then the update operation pe
formed by the computation 1 is ensured to be completed before runnip the
computation 2. Consequently, the main assumption in this approach is that

the worst-case response time of a computation plus the data update timenust
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be less than the tick interval time: R;j + A; <T.

[ ]isr

D Atomic Update
. Computationl

. Computation2

R1 Az R2

Fig. 5.4: Method(1): One-tick duration computation.

The worst-case response time of the computation is simply calculatedybEqua-
tion 5.3:
Ri = Ci+ Cs (5.3)

This method has no impact on the ISR release time because a computation

completes within one tick time.

The worst-case completion time of a computation is calculated by Equatiorb.4:

r = Rj+ A; (5.4)

Method(2): Atomic Update with Enable/Disable Interrupts

A computation may disable the timer interrupt before updating the d ata state.
Once the computation completes, the data is modi ed and the timer irterrupt
is enabled thereafter. The advantage of this solution is that it introduces no
delay between the computation and the data update. However, the updat
operation may exceed the time available in the current time slot beause of a

large size of data that needs to be changed. This will cause a releasetgit to
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the next invocation of the ISR (represented byJs) before it is actually started,
see Fig. 5.5 for example. In the worst-case, the ISR release jitter ctiiequal
A;. This may happen when the computation starts data update operation just
before the beginning of the next invocation of the ISR. Additionally, the method
provides no opportunity to interrupt the current-running comp utation once it
starts an update operation.

[ ]isr

D Atomic Update
. Computationl

. Computation2

R2

Fig. 5.5: Method(2): Computation disables interrupts.

The worst-case response time of a computation is calculated by the equan 5.5.

n

RM = Ci + T' Cs

(5.5)
Rio = Ci

The worst-case response time of a computation that su ers from an ISR redase

jitter is calculated by the equation 5.6:

R + Js
T

RM = Cj + Cs

0 Js Ai:
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where A; ; is the atomic update time needed by a preceding running compu-

tation.

The worst-case completion time of a computation is calculated by the ega-
tion 5.7:

r = Rj + Aj (5.7)

Method(3): Atomic Update Inside the Interrupt Handler

In this method, a computation does not update the data state. The compta-
tion completes and then idles. The data is updated within the next execution of
the ISR. Although this method ensures the strict periodicity of the tick timer, it

introduces a delay to the execution of a succeeding ready-to-runomputation.
For example, in Fig. 5.6, computation 1 idles ford; time unit before the data
is updated in the next invocation of the ISR. Furthermore, a large siz of data
may cause a large overhead to the ISR execution time, leaving no tiento pro-
cess a new ready computation in the next time slot. Similarly to the pevious
method, this method introduces an ISR release jitter which eqals the time of
the atomic update.

[ ]isr

D Atomic Update
. Computationl
. Computation2

R1 da R2

Fig. 5.6: Method(3): Update data inside the interrupt handler.
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The worst-case response time of a computation is calculated by the equah 5.8.

n
RM = C+ I?TI Cs
(5.8)
RY = C;

The worst-case response time of a computation that su ers from an ISR radase

jitter is calculated by the equation 5.9:

R+ J
RI™ =C+ ——— Cs
R = ¢ (5.9)
Js=Aj 1

where A; ; is the atomic update time needed by a preceding running compu-

tation.

The worst-case completion time of a computation is calculated by the eqgar

tion 5.10:
ri=Rj+d+ A
5.10)
o (
di = ?l T R

Method(4): Atomic Update with Rollback

In this method, a computation is allowed to modify its data state immediately
after it has completed. A roll-back mechanism is provided to guaranteghat the
interrupted update operation leaves the data identical to the state before the
execution of the operation. The proposed roll-back mechanism is illusated in
Fig. 5.7. A computation rst obtains a local copy of the data state. When the
computation is completed, it saves a copy of the original data sate in dog and
then updates the global data state. The roll-back mechanism is importantto

protect the data from partial changes because of the interrupted (or inomplete)
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update operation, and to restore the data to the previous consistent site.
However, a considerable interrupt overhead may occur if the updat operation
is interrupted at the point just before it terminates. In this case, a full recovery
procedure must be performed to all changed data, which would introdae a
delay to a succeeding ready-to-run computation. For example, in Fig5.8, the
update operation of computation 1 is aborted in the next invocation of the IR
before it terminates. In this case, a roll-back recovery operation isindertaken
to restore the original state of the data. It consumesB; time units before the
new ready computation 2 is dispatched. Similarly to the previous mehod, a

computation may su er from the ISR release jitter.

) Log Global data state
Empty- ag (1) read
Computation 1 Computation 2 Computation n
Local data state Local data state Local data state
(2) write-backup
computation computation computation
(3) write
~ | Atomic update Atomic update Atomic update

Fig. 5.7: Roll-back mechanism.

The worst-case response time of a computation is calculated by the equa-

tion 5.11.

n
RM™ =G+ — Cs

(5.11)
RY=C

The worst-case response time of a computation that su ers from an ISR radase
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| | Roll-back
D Atomic Update
. Computationl

. Computation2

R1 Ay R2

Fig. 5.8: Method(4): Update data with roll-back.

jitter is calculated by the equation 5.12:

R+ J
RI™ =C+ —I—— Cs
Js=Bi1

whereB; 1 is the time needed to do a roll-back recovery of data of a preceding
running computation. Similarly to the constraint we adopt for the time of the
atomic update, it must be ensured that the recovery time completesin the

worst-case within one tick interval (i.e, B; 1 <T Cs).

The worst-case completion time of a computation is calculated by the ega-
tion 5.13:
r = Rj + Aj (5.13)

Method(5): Delayed Atomic Update

This method always assumes that there is insu cient time to update the data

state of a computation in the current time slot, see Fig. 5.9. When the corputa-
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tion is completed, it postpones the data update operation to the next aailable
time slot. The main advantage of this method is that the ISR has the opportu
nity to abort the current running computation before any changes may ocur
to the data state, and run a new computation after that.

[ Jisr

D Atomic Update
. Computationl
. Computation2

A R2

Fig. 5.9: Method(5): Delayed atomic update.

The worst-case response time of a computation is calculated by the equa-

tion 5.14.

n
RM = Ci + '?r—' Cs

(5.14)
Rio = Cj

This method has no impact on the ISR release time.

The worst-case completion time of a computation is calculated by the ega-

tion 5.15:

ri=Rj+d + Cs+ A
(5.15)
d

—| X
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Method(6): Update Data Now or Delay

A computation checks the remaining time in the current time slot to see if there
is a su cient time to update the data state before the next invocati on of the

ISR. If this is the case, the computation immediately changes the datan the

current slot, otherwise the update operation is delayed to the nextavailable

time slot and the computation idles. Fig. 5.10 illustrates the two cases In the

gure, computation 1 modi es the date immediately when it is completed since
the remaining time d; is longer than the time needed to update the dataA;.

Computation 2, however, delays the update operation because the remaiimgy

time d, in the current slot is shorter than the time needed to complete the
update operation A,. The advantage of this method is that the ISR has always
the opportunity to cancel the current running computation before any changes
may occur to the data state, and to run a new computation after that.

[ ]isr

D Atomic Update

. Computationl

. Computation2

d2 | A2

Immediate Delayed
atomic update atomic update

Fig. 5.10: Method(6): Update now or delay update.

The worst-case response time of a computation is calculated by the equa-
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tion 5.16.

RM = Ci + — Cs
(5.16)
R = Ci

This method has no impact on the ISR release time.

The worst-case completion time of a computation is calculated by the eqga-

tion 5.17:
8
2 Ri + Aj if A d;
r =
> .
T Ri+di+Cs+ A if Aj >dj
(5.17)
Ri
d| = ? T R|
Method Worst-case response Worst-case response time Worst-case completion
time with ISR release jitter time
1 R = C; + Cs none Ri + A
+1 R{' +1 Rl' + Js
2 R'™ = Ci+ ?'Cs R! :Ci+'sz Ri + A
. R! " R +
3 Rinl:Ci"' ?ICS R{'1:Ci+'f‘]sCs Ri+gi_+Ai
Js = Aj 1 di = ?I T Ri
n o+
4 R = Ci+ RT—'Cs R = Ci + LTJS Cs | Ri+A,
Js = Bj 1
R"
5 R'™ = Ci+ ?' Cs | none Ri+ d + Cs+ A
di = & T R
T
R"
6 RM™ = Ci+ ?' Cs | none Ri+ Ai,if Aj d .Or
Ri+ di+ Cs+ Aj,if A; >d;
di = ?' T R;

Tab. 5.1: Response times and completion times of atomic update methods.
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5.5 Evaluation and Discussion

Six methods have been proposed to resolve the problem of atomic updat&Ve
calculate, in each method, the worst-case response time of a computati in the
basic case, the worst-case response time of a computation that su ersdm the
ISR release jitter (when presented), and the worst-case complain time of a
computation. The results are summarised in Table 5.1. The response tigs of a
computation are computed similarly in all methods, see the rst column of the
table. The response time of the method 1 can be considered a speciase of
the response time of the remaining methods because computations, awding
to this method, complete within one tick interval and so the term RT—in equals
1. In the second column, the response time of a computation is calculated
when the computation experiences ISR release jitter. The ISR r@ase jitter is
caused by the overrun of a preceding computation and it is related to he data
update method. The methods 2, 3, and 4 introduce ISR release jittemnd so
they have impact on a succeeding running computation. The methodsdl, 5,
and 6, however, do not introduce ISR release jitter. The third colunn shows
the calculation of the completion time of a computation which includes the
response time of the computation and the data update time. The completn
time varies according to the methods used to update data. The methosl 1,
2, and 4 have similar way of calculation of the completion time which is tle
summation of the response time and data update time only. The methods 3
and 5 require calculatingd;, the idle (waiting) time that the computation has
to wait until the update operation is started, in addition to the respon se time

and data update time.

Based on the rst criterion introduced in section 5.4, the methods 2,3, and 4
are discarded because they introduce ISR release jitter and so mdgad to a
pessimistic analysis. The methods 1, 5, and 6 pass this criterion baase they

have no impact on the ISR release jitter.
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When the system computations are short and can complete within one tickime,
then method 1 would be suitable for implementation of our code generatin
approach. Method 1 has very restrictive assumption on the duration of tle
computations which would be di cult to satisfy if we require long com putations
since this would require increasing the tick interval and reducng responsiveness
of the system. However, this method does not require a special mieanism to
ensure the atomicity of the data update. Moreover, a long computation carbe
split by the programmer into a number of short computations in a way that
ensure all computations and their atomic updates complete within one ttk

interval.

The methods 5 and 6 can be considered when the system computations (or
at least one computation) require more than one tick interval to complete
Although, method 6 would give better performance than method 5 duringrun-
time because the data is updated soon after the computation completegoth
of them have the same worst-case completion time. Now, according to thinird
criterion, method 5 is easier to implement than method 6 because sthod 6
requires access to a hardware timer during run-time in order to ealuate the
remaining time before the next invocation of the ISR. Therefore, méhod 5

would be more suitable for our code generation approach.

A particular mechanism to ensure the atomicity of the data update is not re-
quired in the following two cases. First, a computation takes more ttan one
tick interval to complete but it is not a ected by the interrupt ope rator (i.e.
not interrupted at all). Second, a computation could take more than one tik
interval and the data update is interrupted but the computation does not use
the data again before they are reinitialised. These cases can be chedkesing
model-checking. It would require constructing a suitable propety to verify that

the computation never be a ected by the interrupt or makes use of data kefore

reinitialisation. When there is a computation that runs for a number of ticks
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and can be a ected with the interrupt, then one of the recommended meha-
nism must be implemented and applied in order to ensure the atomi¢y of the
data update. This however is outside the scope of this thesis. Futte work on
the atomic update work would require implementing a chosen solution dr the

code generation, and testing it in a case study.

5.6 Summary

The bCANDLE semantics requires that computations complete and update
their data atomically. The syntactic restrictions imposed by CANDLE ensure
that the interrupt operator is the only source of potential failure of thi s re-
quirement. This chapter has examined the problem of the interrupt operator.
Several methods have been proposed to resolve the problem, namelyestick
duration computation, atomic update with enable/disable interrupts, at omic
update inside the interrupt, atomic update with rollback, delayed atomic up-
date, and update data now or delay. Many of these methods are well-knomv
in the in the context of database transactions (Haerder and Reuter, 1983). We
have presented a new analysis in the context of embedded systemyg applying
response time analysis to calculate the worst-case response time of banethod

and use this as our basis for comparison.



6. EVALUATION AND EXPERIMENTS

6.1 Introduction

The purpose of this chapter is to demonstrate the feasibility of our cale gener-
ation approach on a number of case studies. Additionally, we are attemptingo
highlight the limitations of the approach and assess the complexity of syems
that may be analysed with available computing resource. The measuressed to
demonstrate the practical applicability are the performance and the fomal ver-
i cation capability of the proposed approach. The performance is measuredn
terms of the computational e ort required to generate an executable co@ and
a formal model for a given design, and the computational resources includg
memory (RAM and ROM) and CPU load required to execute the examples on
the target. The experimental results are compared with results takhg an alter-
native approach employing a real-time operating system (e.g, MicroC @-I1I) to
implement the same examples. To evaluate the formal veri cation capadity of
our approach, we generate a formal model (Timed Automata model) for each
case study and use a model checking tool (e.g, UPPAAL Model Checker)ot
check if the system satis es a number of useful properties inclding functional
and timing properties. The main point of this is to discover to what extend
the models which are generated are tractable. Moreover, the computabin re-
sources (CPU time and memory) used by the model checker are measurdor
the properties. This illustrates the cost of the computation resoures required

to verify a number of di erent case studies.

The chapter is organised as follows. Section 6.2 brie y presents the ain char-
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acteristics of the four examples we choose as case studies, namely av oegu-
lator system, steam boiler control system, security alarm system, andnti-lock
braking and anti-slip regulation system (ABS/ASR). Section 6.3 presens our
results from the performance evaluation of the code generated for the kexted
case studies. Section 6.4 provides experimental results that desnstrate the
formal veri cation capability of our approach. Finally, we conclude our results

in section 6.5.

6.2 Case Studies

For our practical evaluation, we use four case studies: a ow regulator syem,
steam boiler control system, security alarm system, and an ABS/ASR systm.
The ow regulator system is a well-known example in the literature (Kopetz,
1997). Additionally, it is especially well-suited to assess the scalabfy of our
approach because we readily can vary the complexity of the designs. Theéeam
boiler control example has multiple operational modes meaning that the gs-
tem behaves in di erent phases during running. This kind of sysem is very
di cult to analyse by traditional methods applicable only to periodi ¢ systems.
The security alarm example illustrates the usefulness of the locatommunica-
tion mechanism adopted by our approach because all system components are
executed on a single-processor platform and communicate only by locglpass-
ing messages. The ABS/ASR system was motivated by the fact that it is an
industry-related example, and it is recently used in the literature, for exam-

ple (Enoiu et al., 2012; Herber, 2010).

6.2.1 Flow Regulator System

The purpose of the system is to control the ow rate of a liquid through a pipe

according to a set value. The physical view of the system is depictein Fig. 6.1.
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The system consists of two processes that run on separate nodes commating
via a CAN bus. The rst process is Flow which periodically reads the rate of
the ow using a ow sensor and then broadcasts the ow value through the
CAN bus. The second one is/alve which controls the position of a valve based
on the received ow value so that the ow rate remains within a small range
around a pre-determined ow value. The system architecture is ilustrated in

Fig. 6.2. The CANDLE program of the system is shown in Appendix A.

E Tank :{ Flow Regulator System

| | {

Flow Setpoint
Py

Control Valve Flow Sensor

Fig. 6.1: Flow Regulator System.

[ System Environment ]

Flow Valve
process process

CAN CAN
Transceiver Transceiver

CAN Bus

Fig. 6.2: Architecture of the ow regulator system.

In order to evaluate the scalability of our approach, the size of the systm design
is varied by adding more processes dflow and Valve, and then the performance
of the generated code for the new designs is evaluated as provided latéer
section 6.3. The system design is varied according to the following soarios. We

preserve the number of nodes and duplicate the number of processexecuting
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on each node of the original design. The processes that are allocated to one
node communicate with the corresponding processes of the other nedising one
CAN bus, see Fig 6.3. For the purpose of performance evaluation, the prose
of each node is duplicated up to three times. So we obtain another twoersions
of the example calledFlow2 and Flow3. Now, Flow2 consists of 2 processes of
Flow and 2 processes of Valve, and Flow3 consists of 3 processes ofviFland
3 processes of Valve. In the rest of this chapter, we use Flowl to fier to the

original ow example which consists of 1 Flow process and 1 Valve pross.

[ System Environment ]

R Valve Valve S
p p process process

CAN CAN
Transceiver Transceiver

CAN Bus

Fig. 6.3: Architecture of the modi ed ow regulator system.

6.2.2 Steam Boiler Control System

This example is a modi ed version of the steam boiler control problem escribed
in (Abrial et al., 1996). The system consists of a steam boiler, a pump, and
water-level sensor. The pump controls the ow of water into the boiler, which

is then heated and evaporated to produce steam. The steam ows out from
the top of the boiler and is used to power a generator. The water-levelensor
provides the control system with the level of water in the boiler. Hg 6.4 shows a
physical view of the system. The objective of the system is to mairdin the level

of water (w) in the boiler within minimum ( W1) and maximum (W3) bounds.
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This can be performed by turning the pump on or o, so it is ensured that
W1 w W, is satised. It is considered unsafe to operate the system if
the sensor process fails. The system detects a sensor processufai when the
interval between sensor messages exceeds some threshold.

Steam output

I Level Sensor

W2 ——sboeoe L

Steam Boiler Control
System

,,,,,,,

777777 = Water
777777777 Pump

Boiler

Fig. 6.4: Steam Boiler Control System.

[ Boiler Environment ]

Controller Pump
process process

WaterLevel

process

CAN CAN CAN
Transceiver Transceiver Transceiver

CAN Bus

Fig. 6.5: Architecture of the steam boiler control system.

The control system consists of three processesController, WaterLevel, and
Pump. Each process runs on a separate node and communicates with other
processes via a CAN bus. Fig. 6.5 shows the architecture of the sy@sh. The
CANDLE program of the system is shown in Appendix A. The system operates

in three di erent modes: initialisation , ready, and normal.
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In the initialisation mode, the system resets its devices and irtialises its
local data. It is assumed that the system starts with the water level n
the boiler between W; and W, and the pump is o. The system moves

to the ready mode after successful initialisation.

In the ready mode, the processe$VaterLevel and P ump repeatedly re-
port a ready message to theController process until they receive astart

message. After that, the system moves to thenormal mode.

In the normal operation mode, the W aterLevel process periodically reads
the water-level sensor and broadcasts the current sensor value. The
Controller process receives the sensor value and then evaluates the value
of the water level. If the level is too high, a message is sent to turm the
pump. If the level is too low, a message is sent to turn on the pumpThe
pump is kept in the current state if water is within the acceptable level.
However, the Controller process sends ahutdown message to other pro-
cesses if it does not receive a sensor level value before timing arid then
the system idles. In this case, it is assumed that the water-levesensor is

faulty.

6.2.3 Security Alarm System

The security alarm system is a simple theft-detection device (&, a briefcase).
The system functions as follows. A user presses a button to enabléé security
mechanism. When the system detects any motion, it requires the & to enter
a security code within a pre-de ned time interval. The alarm tim er starts
when the motion is rst detected. If the correct code is entered n time, the
security mechanism is disabled and the device can be opened by psi®y a
button. When the correct code is not entered on time, the alarm sounds
However, the alarm can be turned o only by entering the correct secuity

code, after that the security mechanism is disabled. The devicean be locked
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and unlocked freely if the security mechanism is not enabled. Thehysical view
of the system is depicted in Fig 6.6. In this gure, the button E of the keypad
is used to enable/disable the security alarm system, and the buttonL is used

to lock/unlock the device. The LCD is used to display the status ofthe system.

LCD Keypad
Alarm PENDING
rme oo (6]
= oo o] [o]
Code L;) 024 L

1

< @ Sounder Security Alarm
System
T |

Fig. 6.6: Security Alarm System.

The system comprises four processes that run on the same node and conmmi
cate via a local broadcast channel. Fig.6.7 illustrates the system ardgtecture.
The main process isControl which continuously monitors and reports the sta-
tus of the device. ThePendingTimer process represents the alarm timer which
keeps track of the current time elapse. TheFlasher process enables a suitable
alert device (e.g, sounder). TheDisplay process outputs the current system sta-
tus to a suitable display device (e.g, LCD). The system processecommunicate
by exchanging messages using a single local broadcast channel. The CANDLE

program of the system is shown in Appendix A.

6.2.4 ABS/ASR System

In a vehicle with a conventional braking system, when the driver depresses the
brake pedal in the case of emergency situation, the vehicle wheels maet
locked. The locked wheels prevent the driver from steering te vehicle while

stopping. This could threaten the driver's life or cause severe damagero avoid
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Flasher Control
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Local Channel
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Timer
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Fig. 6.7: Architecture of the security alarm system.

wheel lockup or loss of traction, the ABS/ASR system (Day and Roberts, 2002;
Bosch GmbH, 2011) has been developed . The ABS/ASR system monitors the
speed of each wheel and regulates the brake pressure in order to avoiwtking
a wheel. This improves the driver's control over the vehicle wile the brakes

are applied.

The system consists of three process types: Sensor process that reports a
wheel speed, eBrake process that regulates the brake pressure of a wheel, and
a Control process that executes the ABS/ASR control algorithm. There are
four sensor processes and four brake processes in the system. Tl&sor and
brake process are allocated to the same node, whereas the control pess is
executed on a single node. All processes communicate using a CAN buEhe
control process periodically sends a speed request to the sengwocesses. The
sensor processes send the speed of the wheel to the control praceshe control
process executes the ABS/ASR control algorithm, and then broadcasts the
new pressure values. The brake process of each wheel reads its cepending
pressure value and adjusts the brake pressure accordingly. The phgal view
of the system and the architecture of the design are shown in Figure 6.8The

CANDLE program of the ABS is shown in Appendix A.
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Hydraulic Wheel Speed Control Unit
Modulator Sensor
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Controller Controller
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Pedal Controller
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Fig. 6.8: ABS/ASR Control System.

6.3 Performance Evaluation

For the evaluation of the performance of our approach, we measured the com-

putational e ort of

the generation of executable C code for the CANDLE program,

the transformation of a given CANDLE program into an UPPAAL model.

The code generator program and the model generator program were run on a
PC with an AMD Athlon(tm) 3GHz Dual Core Processor 5200B and 2 GB of
main memory running a Linux operating system. Table 6.1 shows the main
features of the system design for each case study. In this tabldrocessis the
number of processes in the CANDLE design of the exampld,OC is the number
of lines of CANDLE code, and Transition is the number of transitions of the
net generated from the example design. The results show that the exapfes
have small nets (expressed by the number of transitions), e.g thé&larm and

ABS example have only a few tens of transitions.

The results of the code and model transformation times are presenteth Ta-
ble 6.2. In this table, Code-time represents the time required to generate an

executable C code for the example, and/lodel-time expresses the time required
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Case-study | Processes | LOC | Transitions
Flowl 2 15 7
Flow?2 4 27 12
Flow3 6 39 17
Boiler 3 60 39
Alarm 4 61 32
ABS 9 75 38

Tab. 6.1: Features of the case studies.

to generate an UPPAAL model for the example. The transformation times are
given in seconds. The code and model generator program has been written
in the Ocaml and Python programming languages using the StringTemplate
library (Parr, 2013). The experiment shows that the measured times areac-
ceptable (i.e. performed within a few seconds), and vary a little asa function

of the size of the example (number of processes, LOC, and transitions)

Case-study | Code-time (s) Model-time (s)
Flowl 2.00 3.81
Flow2 2.02 3.83
Flow3 2.06 3.97
Boiler 2.34 4.65
Alarm 2.29 4.77
ABS 2.26 5.18

Tab. 6.2: Transformation times from CANDLE into C and UPPAAL.

For the evaluation of the computational resource of the approach, the memory
usage of the executable C code has been measured for each case study. The
case studies were implemented using an Olimex LPC-2378STK developmite
prototype board with MCU LPC2378 16/32 bit ARM7TDMI-S ™t processor,
512K Bytes of Program Flash, and 16K Bytes of RAM. The source codes of the
examples were compiled using the IAR Embedded Workbench IDE veisn 6.21
with the compiler setting shown in Table 6.3. The results of the exgriments

are shown in Table 6.4. When the example is implemented using more #n one
node, the memory usage is presented separately for each computing readFor
instance, the Flowl case study consists of two computing nodesnode. ow and

nodevalve The scheduling algorithm employed in each node of the case study is
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shown. Currently, we use two scheduling methods: cooperativéco) and round-
robin (rr) scheduling method. The memory usage of the application cod (which
is generated code by our framework) and the device-driver code (wbl is used
to access the 10, e.g. CAN, LCD, LEDs, and ADC) were shown separately,
see Table 6.4. For the application code, the RAM and ROM requirements
were measured to assess the e ciency of the generated code. The eeqimental
results of the memory usage were encouraging because the examples coned
relatively litttle RAM. The RAM area is approximately 20% of the ROM area,
see Fig.6.9. The memory usage of the device-driver code was preseniadotal
(RAM and ROM), see the column IO code of the table. The experimental
results showed that the alarm example requires the greatest |0 codeompared
to the others (approx. 11.5 KB). This is because the example makes us# the

LCD that requires much more code than other devices such as turning do

an LED.
General Options

Target device NXP LPC2378
Endian mode little
Output le executable

C/C++ Compiler Options
Language C
C dialect C99

Language conformance | standard with IAR extensions
Generate interwork code| true

Processor mode ARM

Optimisation level high, balanced

Tab. 6.3: IAR C compiler options.

Additionally, the ISR time has been estimated empirically for each cas study
with expected uncertainty of about 5sec. Although, an analytical study
using some static analysis tools (e.g. (Absint, 2012; Tidorum, 2012)) would be
interesting to obtain the worst-case execution time of the ISR, sub tools are not
supported by the current IDE. The ISR times are presented in thelast column of

Table 6.4. We can notice that the ISR time increases in according to theige of
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Case-study App. Code (Byte) IO Code (Byte) ISR
RAM ROM | Total RAM+ROM time ( s)
Flowl | node ow (co) 381 2677 | 3058 2472 25
node valve (co) 373 2561 | 2934 2004 20
Boiler | node.controller (co) 396 2600 | 2996 1992 40
node pump (co) 396 2596 | 2992 1992 40
node waterlevel (co) 408 2836 | 3244 2472 20
Alarm | nodealarm (rr) 1324 | 5332 | 6656 11557 150
ABS node_control (co) 832 3776 | 4608 2008 40
node.wheelO (co) 506 2729 | 3235 2480 30
nodewheell (co) 506 2729 | 3235 2480 30
node wheel2 (co) 506 2729 | 3235 2480 30
node wheel3 (co) 506 2729 | 3235 2480 30

Tab. 6.4: Memory usage of the case studies.

Fig. 6.9: RAM vs. ROM memory usage of the case studies.

the example. The ISR time of the alarm example required considerablyonger

execution time compared to the other examples because all system compents

are allocated on the same computing node.

Furthermore, the memory requirement of the generated code for somexamples

have been compared with alternative method that employs the MicroCOS-II

real-time kernel to implement the same examples. The examples #t we use

are the original ow regulator system (Flowl) and its varied versions (Flow2

and Flow3) that already discussed in section 6.2.1. The examples impleamted
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in MicroC/OS-Il have been obtained from undergraduate student assignnents
performed in Northumbria University. Table 6.5 shows the measuremats of the
memory usage for the two implementation methods. The device drivecode was
omitted in this experiment since it is xed in both methods. The results show
that our approach can generate C code in which the required memory sizesi
competitive to the traditional method that employs a widely used real-time
kernel. Fig. 6.5 presents the results of the comparison. It is appardrthat the

required RAM of our approach is at least 50% smaller than the required RAM

of the MicroC/OS-Il implementation.

Generated App. Code (Byte) RTOS App. Code (Byte)
Case-study RAM ROM Total RAM ROM Total
Flow 1 | node ow 381 2677 3058 1000 | 2402 3402
nodevalve 373 2561 2934 1340 | 2906 4246
Flow 2 | node ow 485 2821 3306 1164 | 2472 3636
nodevalve 461 2673 3134 1488 | 2994 4482
Flow 3 | node ow 589 2953 3542 1368 | 2538 3906
node valve 565 2725 3290 1680 | 3078 4758
Alarm | nodealarm | 1324 | 5332 6656 2914 | 5614 8528

Tab. 6.5: Comparison with RTOS code.

6.4 Formal Veri cation

For the evaluation of the formal veri cation capability of our approach, we gen-
erated TA models from the CANDLE designs of the provided case studiessing
an existing framework. The main point of this is to discover to what exend the
models which are generated are tractable. We veri ed safety (sometimg wrong
never happens) and bounded-response time properties (somethingseful will
happen before some time), see section 6.4.1. Additionally, the model ebking
tool is used to assess the capability of the available hardware resourseAn ex-
ample of that is a number of transmit/receive bu ers required of an empoyed
CAN controller. This demonstrates the usefulness of the generated nuel dur-

ing the design phase, see section 6.4.2.
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Fig. 6.10: Memory usage comparison.

We used the UPPAAL model checker version 4.0.11 with the veri cation séting
shown in Table 6.6. The model checker program was run on a PC with an AMD
Athlon(tm) 3GHz Dual Core Processor 5200B and 2 GB main memory running

a Linux operating system.

| Option | Value \
Search Order Breadth First
State Space Reduction Conservative
State Space Representation DBM
Diagnostic Trace None
Extrapolation Automatics
Hash table size 16MB

Tab. 6.6: UPPAAL veri cation options.
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6.4.1 Model Checking Properties

Flow Regulator System

For the ow regulator example, we veri ed the following properties:

P1.1 deadlock freedom,

P1.2 whenever the ow sensor is read, the valve is adjusted withirt time units,
P1.3 whenever the ow sensor is read, it is read again withint time units,
P1.4 whenever the valve is adjusted, it is adjusted again withint time units,

P1.5 whenever the ow message is enabled, then it will be receivedithin t

time units.

The property P1.1 is a safety property. The property P1.2, P1.3, and P1.4 ae
bounded-response time properties. They required a separate testutomaton
to be expressed in the UPPAAL language. The property P1.5 represents
worst-case transmission time of the message. It is also a bounded-rasyse time
property. The speci cation and the veri cation of the properties are i llustrated

in the following.

The property P1.1  can be expressed easily in the UPPAAL query language

as follows:
A[] not deadlock (P1.2)

The property P1.2 is an example of bounded-response time property. The

property has the following general form:

8 (P!8 Q~g T)

which means that wheneverP (reques) is satis ed at a certain time, then Q

(responsg will eventually be satis ed within T time units, where g is a global
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clock which is reset onceP has occurred. To express the property we, following
the approach of (Jensen et al., 1996; Aceto et al., 1998), introduce a separateste
automaton that probes the system processes. In the system model, ¢hedges
that have observable computations are provided with probe actions. Thetest
automaton is designed to enter a new location when an observable computati
is red. Then a simple form of liveness property (something usefuwill happen)

in UPPAAL is used to construct the property.

The test automaton of the property P1.2 is depicted in Fig 6.11. The test au
tomaton interacts with the system model by using two synchronisatbon actions:
ReadSensor? and AdjustV alve ?. The corresponding actionsReadSensor and
AdjustV alve ! are added into the edges that contain the computationReadSensor
and AdjustV alve respectively. The TA model of the Flow and Valve process
are presented in Appendix B. For example, when the system res thebservable
computation ReadSensor, the test automaton is forced to enter the location

L1

Fig. 6.11: Test automaton of the property P1.2 of the ow regulator example.

The properties are translated into a liveness property in UPPAAL, written
, Which is read as whenever is satis ed, then eventually  will be
satised. ' event means that the test automaton reaches the statd_1 and
event means that the automaton reaches the staté_2. In order to measure the
time required between the two events, we use a clock variablé. The clock
variable is reset whenever the system enters 1 state. Moreover, the location
L 2 is chosen to becommitted which means that time is a not allowed to progress

in this location, and the outgoing edge of the location must be involved inthe
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next state transition. This is very useful when construct the property in order
to capture the moment at when the test automaton rst enters this location.

Then we can write property P1.2 in UPPAAL as follows:

(Testl.L1 and Testl.tt == 0) -->
(Testl.L2 and Testl.tt <= C1) (P1.2)

where C1 is the upper bound time of the property and it is obtained by trial
and error. We have exploited the UPPAAL simulator to obtain the value of C1
First, we run the veri er on a property that simply demonstrates th e location

L2 is reachable in order to get the initial value of CL

E<>(Testl.L2)

When the veri er returns, we read the maximum value of the clock varable
Testl:tt from its range in the simulator window. We then assign this value
to C1land run the property P1.2. If the property is satis ed, we can conclude
the nal value of CL If the property is not satis ed, we enable the diagnostic
trace in the simulator window and read the maximum value of Testl:tt from
its range that violates the property. We use the new value to run the poperty
P1.2 again. We repeat this process until the property P1.2 becomes satied

for a particular value of C1

The properties P1.3 and P1.4  represent the periodicity of executing the op-
eration ReadSensor and AdjustV alve respectively. It is useful to predict the
worst case time between two consecutive activations of an operation in # sys-
tem. For example, the operationReadSensorcan sense a change in the value of
the ow rate only at regular intervals (i.e. the ow rate is sampled). T he change
in the value may happen just after the completion of the operation. Theefore,
to calculate the maximum time to adjust the valve for a new value of the ow

rate, we have compute the maximum interval time of the operationReadSensor
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and the maximum time between the ReadSensorand AdjustV alve operation.
This requirement can be expressed simply by combining the propéy P1.3 and

P1.2.

We use the same approach above to construct properties P1.3 and P1.4. How-

ever, the second observable action in the test automaton is replaced witthe
action that is enabled when the operation is executed again. For example he
test automaton in Fig. 6.12 observes the two consecutive occurrences ttie
operation AdjustV alve, so the probe actionAdjustV alve ? is used in the rst

two edges of the automaton. The property is written in UPPAAL as follows:

(Test2.L1 and Test2.tt == 0) -->
(Test2.L2 and Test2.tt <= C2) (P1.3)

where C2 is the upper bound time of the property and it is obtained by trial

and error as well.

Fig. 6.12: Test automaton of the property P1.3 of the ow regulator example.

The test automaton of the property P1.4 is shown in Fig 6.13 and similarly we

can write the property as follows:

(Test3.L1 and Test3.tt == 0) -->
(Test3.L2 and Test3.tt <= C3) (P1.4)

where C3 is the upper bound time of the property obtained also by trial and

error.
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Fig. 6.13: Test automaton of the property P1.4 of the ow regulator example.

The property P1.5 represents the worst-case response time (WCRT) of a mes-
sage delivered by the CAN. This time includes the queueing time ira transmit
bu er and the transmission time of the message. Comparing to traditional
methods (e.g, (Davis et al., 2007)), our approach does not require a comple
analysis and restricted assumptions (e.g, periodic messages) in ord&® calcu-
late the WCRT of a message. The approach bene ts of the model-checkintpol
to predict the WCRT of (periodic or aperiodic) messages as long as a TA mdel

of the system is available.

We use the same approach to construct the property. The test automaton
observes the communication model of the system. The provided frameork
generates this model in parallel with the model of the system proceses from
the design. Appendix B shows the TA model of the communication. The ést
automaton of the property is depicted in Fig. 6.14. In this gure, the action
k_e? is enabled whenever a message is queued for transmission. The actioa?
is enabled when the message is accepted. The varialev denotes the message
identi er (e.g, FLOW ). A guard (e.g, k.v == FLOW ) is added into the rst
two edges of the automaton to ensure that the transition is enabled only fora

particular message id. The property can be written:

(Test4.L1 and Test4.tt == 0) -->
(Test4.L2 and Test4d.tt <= C4) (P1.5)

where C4 is the upper bound time of the property obtained by trial and error.
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Fig. 6.14: Test automaton of the property P1.5 of the ow regulator example.

The UPPAAL model checker was run in command-line mode because the GUI
version does not provide the veri cation time and memory usage neededo
obtain the veri cation results. If ow _modelxml contains the TA model gener-
ated for the ow example, and ow _modelq is a le containing a statement of

a property, the property can be checked in UPPAAL using the command:
verifyta -u flow_model.xml flow_model.q

The veri cation time and the memory usage needed to check the propejt are
computed using the Memtime tool (Bengtsson, 2012) with version 1.3 whit
is the default performance measuring tool used by the UPPAAL developmet

team:
memtime verifyta flow_model.xml flow_model.q

The result when model checking the properties are presented ifiable. 6.7. In
this table, the second column shows the time needed to check thergperty
in seconds. The third column shows the number of states generated teerify
the property. The fourth column shows the size of memory used to vefy the
property. The result of the veri cation is shown in the fth column . The
symbol P is used to represent that the property is satis ed, the symbol is
used when the property is unsatis ed, and the symbol ? is used for uknown
result. The last column shows the upper bound of the timeCi required for a
property. The values of Ci have been obtained for the ISR periodT = 1000 s

and the ISR time Cs = 250 s with CAN bus equals 100 kbit/s. These value
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are also assumed for the remaining case studies. Notice that the rst mperty

(deadlock freedom) has no time bound, so we show the symbol instead.

The measurements show that the properties required less thanNB of memory
to be veri ed within a fraction of second. However, notice that the values of
the CPU time (0:10sec9 and memory usage (198BB ) shown in the table are

minimum values that are generated by the Memtime tool.

Property Time (s) | State | Memory (KB) Satis ed Ci(s)
P1.1 0.10 28 1988 -
P1.2 0.10 28 1988 - C1=1870
P13 0.10 33 1988 - C2= 11600
P1.4 0.10 28 1988 - C3= 11250
P1.5 0.10 28 1988 v C4=620

Tab. 6.7: Model-checking results of the ow regulator example.

Steam Boiler Control System

For the steam boiler example, we veri ed the following properties:

P2.1 deadlock freedom,

P2.2 whenever the sensor reads a low level of water, the pump is tued on

within t time units,

P2.3 whenever the sensor reads a high level of water, the pump is tued o

within t time units.

The property P2.1 is a safety property, whereas P2.2 and P2.3 are bounded
response time properties. The properties are speci ed and veri d similarly to
the properties of the ow example. The result of model checking of he prop-
erties are presented in Table. 6.8. The measurements show that thergperties

required less than 2MB of memory to be veri ed within a fraction of second.
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Property Time (s) | State | Memory (KB) Satised | Ci(s)
P2.1 0.10 233 1988 :
P2.2 0.10 233 1988 : C1=2320
P2.3 0.10 233 1988 v C2=2320

Tab. 6.8: Model-checking results of the steam boiler example.

Security Alarm System

For the alarm example, we veri ed the following properties:

P3.1 deadlock freedom,

P3.2 whenever a motion is detected, the alarm timer is enabled witm t time

units,

P3.3 whenever the alarm timer is expired and the correct code is ested, the

sounder (LED) alerts (toggle) within t time units,

P3.4 if the sounder (LED) is in alert (toggle) state and the correct code §

entered, the sounder (LED) is turned o within t time units.

The property P3.1 is a safety property, whereas P3.2, P3.3, and P3.4 are

bounded-response time properties. The properties are specied ahveri ed

similarly to the properties of the ow example. The result of model checking

of the properties are presented in Table. 6.9. The measurements shaivat the

properties require less than 7€M B of memory to be veri ed in less than 15ec

Property Time (s) State | Memory (KB) Satis ed Ci(s)
P3.1 13.42 | 183942 47160 -
P3.2 12.62 | 188328 64632 - C1=1350
P3.3 11.42 | 184056 64240 - C2=2920
P3.4 12.21 | 183944 64372 v C3=2920

Tab. 6.9: Model-checking results of the security alarm example.

Anti-lock Braking System

For the ABS example, we veri ed the following properties:
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P4.1 deadlock freedom,

P4.2 if the acceleration is changed, the brake pressure of the wheelsearegu-

lated within t time units,

P4.3 whenever the rst request of speed is sent to a wheel, the ke pressure

of the wheels are regulated withint time units.

The property P4.1 is a safety property, whereas P4.2 and P4.3 are bounded
response time properties. The properties are speci ed and veri d similarly to
the properties of the ow example. The result of model checking of he proper-
ties are presented in Table. 6.10. The measurements show that the prepties
required less than 60MB of memory to be veri ed within a few seconds. This
demonstrates a potential advantage of our approach since complex systems can
be expressed by quite small models. By contrast, in the approach of (Hber,
2010), the UPPAAL model of the ABS system generated from SystemC code
has approximately 10 times moreprocesseshan the UPPAAL model generated
by our approach from the CANDLE program which implements the same func-
tionality. Table 6.11 summarises the main characteristics of the two TAmodels
of the ABS example. This has a considerable impact on the tractability of he
generated model. For instance, the UPPAAL model checker has been used
check a basic property (deadlock freedom) on the TA model generateddm the
SystemC code for the ABS example. The veri cation ended after more tlan
5 hours with an out-of-memory error and 16777216 states stored during the
veri cation. The same experiment, undertaken on our TA model of the same
case study, terminated positively within 0.60 second, having stord 11469 (see

Table 6.10).
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Property Time (s) | State | Memory (KB) Satised | Ci(s)
P4.1 0.60 11469 38492 :
P4.2 0.60 11469 55408 ; C1=3320
P4.3 1.20 11469 56192 v C2=14220

Tab. 6.10: Model-checking results of the ABS example.

ABS TA Model (CANDLE) ABS TA Model (SystemC)
Process 12 121
Channel 8 168
Clock 0 global and 12 local 1 global and 1 local
Variable 8 283

Tab. 6.11: TA model comparison of the ABS system.

6.4.2 \Verifying Transmit/Receive Bu er Resources

It is very useful for system developers to be able to assess the caplity of
the available hardware that will be used to run the system. An exampleis the
number of transmit/receive bu ers of the CAN controller required by the system
implementation. For that reason, TA models have been generated for vaed
versions of the ow example because it was simple to change the compligx of
the example. The example was varied by adding new processes Bfow and
Valve to the original design in according to the second scenario discussed i
section 6.2.1. In this scenario the system architecture consists oivb computing
nodes sharing a single CAN bus. The Flow processes are allocated thet rst
node, and the Valve processes are allocated to the second one. The doyed
CAN controller (NXP, 2009) features triple transmit bu ers and double receive
bu ers. The UPPAAL model checker was used to determine the numberof

transmit/receive bu ers required by the examples in the worst-case.

Firstly, to determine the maximal number of the transmit bu ers, the TA model
of the CAN shown in Appendix B is amended as follows. Whenever a new nse
sage is enqueued, a counter is incremented. Each node transmits arnticular
set of messages which can be known at design time. Therefore, if we Wito

calculate the number of the transmit bu ers for a particular node, we have to
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constrain the operation of the counter increment. For example:

if((k_v==id1)||(k_v==id2)||(k_v==id3)) f

tCounter++;

where k_v holds the current message ID idl, id2, or id3) that can be sent
by the node. tCounter is a variable that holds the number of the transmit
bu ers. When the message is successfully transmitted, the coumetr is decre-
mented. This happens when the model res the post-acceptance trasition.

Then the property is expressed in UPPAAL as:

Al] (k.tCounter <= C1)

The property will be satis ed if the number of bu ers never exceeds the value

C1 which denotes the number of the available transmit bu ers.

Secondly, to determine the number of the receive bu ers, we intoduced a sep-
arate TA model, see Fig.6.15. The model consists of three locationd,0, L1
and L2. It is possible to move from locationLO to L1 at any time. Once the
automaton enters L1, it can stays in this location up to (T + Cs) time units.
This time expresses the maximum interval time that a message may wain the
bu er until it is polled by the ISR. This time equals the ISR peri od (T) plus the
ISR execution time (Cs). A counter is incremented whenever a n@ message
from a prede ned set is accepted. A particular node can receive a gde ned set

of messages. The counter is used to hold the number of bu ers. The UPPAAL

property:

A[] (rBuff.rCounter <= C2)

is true if the number of bu ers never exceeds the valueC2, where C2 expresses

the number of the available receive bu ers.
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Fig. 6.15: Test automaton of receive bu er veri cation.

The results of the transmit/receive bu er veri cation are present ed in Table 6.12
and Table 6.13 respectively. The veri cation was run for the following setting:
T = 1000s, Cs = 250 s, the transmission rate of 20(&bit=s, and a message
payload of lbyte In these tables, the rst column shows the number of Flow
and Valve processes used in the example, the second column shows the avaiéab
number of buers. The computation resources (CPU time, state-spacesize,
and memory usage) to run the veri cation are shown in the next three colimns

respectively. Finally, the result of the veri cation is shown in the last column.

The experiments showed that it is possible to verify the transmi bu er number

of 15 processes of Flow and Valve in the current computing resourcest took
less than 4 minutes of CPU time, and approximately 110AB of memory us-
age, see Table 6.12. However, the number of receive bu er was veri ed fahe
examples with only up to 12 processes. The example with 12 processéook
about 75 minutes of CPU time, and 800 B of memory usage, see Table 6.13.
The veri cation of 13 processes was terminated after 16 hours of runninghe
experiment with reported memory usage exceeds@B. The experiment took
an unexpectedly long time because the model checker program made uskthe
swap memory. When a state-space size becomes larger than an available mem
ory, a part of the state space is usually stored in a swap area. It is well kown

that reading/writing operations from/to the swap memory are slower than th at
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performed in the main memory. The observed time and space complexityf
the veri cation of receive bu er is shown in Fig. 6.16 and Fig. 6.17 respetively.
The gures show that the CPU time and memory usage are increased rapidly

as the number of processes is increased.

| Process | C1 [ Time (s) | State | Memory (KB) | Satised |
1 3 0.10 43 2008] ©
2 3 0.10 284 2008 -
3 3 0.10 1030 2008 "
4 3 0.10 457 2008
5 3 0.20 1266 37840
6 3 0.30 2999 37984
7 3 0.70 6367 38108
8 3 1.60 | 12444 38508
9 3 3.90| 22786 39296
10 3 8.41| 39573 40376
11 3 18.02| 65776 41988
12 3 36.13| 105351 44952
13 3 69.46 | 163462 65812
14 3 128.82| 246735 87364
15 3 236.16| 363545 112708

Tab. 6.12: Transmit bu er veri cation of the ow regulator examples.

| Process | C2 | Time (s) | State | Memory (KB) | Satised |
p

1 2 0.10 43 2008 n
2 2 0.10 284 2008 C
3 2 0.10 315 2008

4 2 0.20 883 37840

5 2 0.30 2599 37844

6 2 0.80 7887 38112

7 2 3.10 24383 39076

8 2 13.62 76283 41816

9 2 58.76 | 240519 50632

10 2 252.15| 762055 112500

11 2 1073.58| 2420911 289392
12 2 4423.76| 7698483 814088
13 2 57615.16 ? 2220692 ?

Tab. 6.13: Receive bu er veri cation of ow regulator examples.

The results show that only the examples that have up to three Flow anl Valve

processes satisfy the available transmit bu er of the employed CANcontroller,
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Fig. 6.16: Time complexity of receive bu er veri cation.

Fig. 6.17: Space complexity of receive bu er veri cation.
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see Table 6.12, whereas the examples with up to two Flow and Valve prosses
satisfy the available receive bu er, see Table 6.13. This is becausené Flow
processes have similar behaviour, i.e. they run periodically athe same rate, so
they all come to the same instant when they enqueue their messagestanthe
transmit bu er. A way of investigating this further was considered by adding
an o set to each Flow process, so they run at di erent rates. The o sets were
assigned as follows. If there ardN Flow processes in the example, the rst
Flow process will have 1 tick o set, the second will have 2 tickso set, ... and
so on. Interestingly, this modi cation enables the examples to satsfy both
the available transmit and receive bu er for some examples, see Tabl&.14
and Table 6.15 respectively. In the rst experiment, we veri ed the number
of transmit bu ers for 11 processes of Flow and Valve and the veri cation
returns positive results for this examples. The 12 processes exaie however
was not determined. The veri cation for this example was terminated ater
approximately 65 hours, see Table 6.14. In the second experiments, weve able
to verify the number of receive bu ers for 14 processes in the cuent computing
resources. For instance, the veri cation of 14 process took less than Bours to
return the result, see Table 6.15. However, the veri cation of 15 proceses was

terminated after about 16 hours and so the result was not determined.

| Process | C1 | Time (s) | State | Memory (KB) | Satis ed \

1 3 0.10 48 2008 -
2 3 0.10 278 2008 -
3 3 0.20 906 37832 o
4 3 0.20 | 2669 37844 -
5 3 0.60| 6765 38112 -
6 3 1.70| 16041 38644 o
7 3 5.01| 37662 39692 o
8 3 15.12| 87949 42232 o
9 3 45.34| 203551 47924 -
10 3 148.86| 502548 62684 -
11 3 1680.50| 3316922 220852]  ©
12 3 | 235006.00 ?

Tab. 6.14: Transmit bu er veri cation of ow regulator examples with o set.
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Process [ C2 | Time (s) | State | Memory (KB) | Satised |

1 2 0.10 48 2008] -
2 2 0.10 278 2008 o
3 2 0.10 906 2008 o
4 2 0.20 2669 37848
5 2 0.60 6765 38116 -
6 2 1.60 16041 38508 -
7 2 501 37662 39692|
8 2 15.13 87949 42232 :\
9 2 45.35 203551 47932 i
10 2 148.79 502548 62680 "
11 2 560.68| 1137807 97684

12 2 4247.32| 4844946 309928

13 2 8213.91| 10231159 623748

14 2 19925.65| 21003639 1233312

15 2 57996.51 2081260 ?

Tab. 6.15: Receive bu er veri cation of ow regulator examples with o set.

Surprisingly, only the veri cation of the examples with up to 10 processes re-
turns positive results. The examples with more than 10 processesodhot satisfy
the number of the available receive bu er. The counter-example gearated by
the model checker program was analysed to gure out the source of the probm.
The investigation leads to a problem in our policy of assigning o sets. Alhough
each Flow process runs periodically with di erent o set, the o s et value should
not exceed the period of the process. The current period of Flownpcesses is
10 ticks. So the process 11 will coincide with the process 1, the pcess 12 will
coincide with the process 2, ...

and so on. This explains the unsatisd result

of the veri cation for the examples with more than 10 processes.

Alternatively, we could modify the system architecture by employing more com-
puting nodes. Then we can allocate a fewer number of Flow and Valve prcesses
in each node. This will decrease the number of transmit/receive bwer required
by each node. Although this solution has an impact on the cost of the sys-
tem implementation, it could be more feasible in the cost than using gher
performance hardware to comply with the provided design. Consequdly, the

experiments demonstrate the usefulness of having a model of thggstem early
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during the design phase, because the user can then verify the appdibility of

the available resources before running the system implementatian

6.5 Summary

The experiments have successfully demonstrated the feasilyj the performance
and the formal veri cation capability, of our code generation approach. The
computational time of the transformation from CANDLE to executable C code
and UPPAAL model is modest and varies only a little as a function of the num
ber of processes, the code size, and the net size. It requires prd few seconds
even for large examples. The e ciency of the generated code has been cem
pared with other code that employs a real-time kernel. The measum@ents have
shown that our generated code is competitive in size to the versiomiplemented
by a widely-used RTOS, and the required RAM is at least 50% smaller in ize
than that is required by the RTOS. This demonstrates that our approach can
generate an e cient code suitable for limited resource embedded sstems. Addi-
tionally, the generated code is guaranteed to realise the behaviour of &NDLE
model which can be formally veri ed against key properties. The expemental
results of the formal veri cation capability are promising. A number of u seful
properties of a broad class of interesting examples have been sucsksly veri ed
within acceptable computation resources. The results have shownhiat using
a model-checking tool is very useful during the design time to asess run-time

resources requirements.



/. CONCLUSIONS AND FUTURE WORK

In this chapter, we present a summary of the contributions of the thesis, discuss

the limitations of the work, and present possible directions for future research.

7.1 Summary of Contributions

The work presented in this thesis addressed the problem of generaty exe-
cutable code for CAN-based distributed embedded systems in a wayhtait guar-
antees that both functional and timing properties expressed in a highlevel
formal language are satis ed. The thesis proposed a novel approach in which
system behaviour is speci ed in CANDLE, a high-level language which igjiven
a formal semantics by translation to bCANDLE, an asynchronous process cal-
culus. A bCANDLE system is translated automatically, via a common interme-
diate net representation, both into executable C code and into timel automaton
model that can be used in the formal veri cation of a wide range of functioral

and temporal properties.

A code generator was developed that can automatically produce executablé
code from a CANDLE specication. The code is generated from CANDLE
via an intermediate net representation. An e cient C representati on of the
net was presented. We introduced a time-triggered execution (implementation)
model to execute the net in which, at each tick, a scheduler detenines which

computation should run next. The schedulers that we have considekinclude
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simple round-robin, weighted round-robin, cooperative, and hybrid methods.
The hybrid scheduler combines cooperative and round-robin scheding tech-
niques. These scheduling strategies facilitate o -line predidbn of the worst-
case response time of system computations. A single broadcast asynchrorsou
communication mechanism was adopted and implemented. The communicain
mechanism is an abstraction of the CAN. All communications occur through
this mechanism and never through the use of shared variables. This gyte
notion, employed both for external and local communication between syem
components, provides exibility to the system developer to freely distribute
system components on a number of nodes, and simpli es the process géner-
ating a formal model of the system. An AADL-like language was introduced
to describe the system architecture. The description le provides details to the
code generator about processes, nodes, process-to-node allocatiecheduling
algorithm, tick rate, and communication details, including the IDs of messages

and network transmission rate.

The bCANDLE semantics assumes that computations complete and update
their data instantaneously and atomically on completion. Therefore, a num-
ber of methods were proposed that ensure the atomicity of data update. fie
methods were evaluated based on three criteria we identi ed. It vas concluded
that for short computations that complete within one tick, the method on-tick
duration computation would be suitable, and for long running computations,

the delayed atomic updatemethod would be considered for our code generator.

A rigorous argument was presented that, for any system expressed in thieigh-
level language, its formal model is a conservative approximation of the e
cutable C code. This allows the system developer to conclude thaff ia model
satis es any universally quanti ed property, then it is guaranteed t hat the im-

plementation will also satisfy the same property.

A variety of experiments were conducted to assess the applicabiiit and per-
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formance of our approach. We used four representative case studies: awo
regulator control system, a boiler control system, a security alarm sy&m, and
an anti-lock braking system. Executable C code and formal models wersuc-
cessfully generated for the case-studies in a reasonable time. Theemory
consumption of the generated code was assessed and compared with an alter-
native method employing a widely-used real-time kernel. The eperimental
results showed that overall memory consumption of generated code impet-
itive with that used by the real-time kernel. Additionally, the re sults showed
that RAM usage is at least 50% less than that required by the real-time kerrl.
These results give us con dence in the viability of implementinga code genera-
tor based on the net representation of the CANDLE system under developma.
The tractability of the model checking problem for the generated formal mod-
els was assessed by using an o -the-shelf model checker. A numbef useful
properties were successfully veri ed within acceptable compution resources.
The experimental results showed that the generated models are comapatively
small. We believe this demonstrates the power of the abstractions addpd by
our approach. The results showed also that using a model-checkingbl is very
useful during system design phase to assess run-time resourc&u@ements in

addition to typical functional and temporal properties.

This is the rst time that a code generator for CAN-based systems has bee
developed that allows model checking of speci cations that can be guaraeed

to retain the behaviour of implementations.

7.2 Limitations

The main motivation behind our approach is the capability of generating a
model amenable to model checking and executable C code suitable fonple-
mentation. An informal argument was proposed to con rm that the formal

model conservatively approximates its implementation. This work dd not for-
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mally verify the relationship between the model and the code. Thereason for
that is that the target implementation language (which is C) lacks a formal

semantics. Moreover, further validation would be required also for he trans-
lation from C to a low-level machine language. This is important to ensue
that the behaviour described in C is preserved during the compdtion to the

target machine code. A rigorous solution to this problem is not trivial. The
problem has been addressed in th€ompCert project (CompCert, 2012) and
the results have been extensively published, for instance (Bky, 2008; Dargaye,

2009; Leroy, 2009; Blazy and Leroy, 2009; Bedin et al., 2012).

Additionally, a model checking technique was used to verify that the model ex-
hibits some useful properties. The main drawback with such a techique is the
state-space explosion. This work did not investigate methods and tedfiques
to tackle this problem. However, computer capacity has been signi catly im-

proved in terms of processing speeds and main memory sizes. Thidals user
to tackle larger problem sizes that were previously impossible to wéfy. Fur-

thermore, model checking algorithms and tools are also exploiting therend

in increasing hardware performance. An example of this is the capabilt of
executing a model checker on multi-core machines or a network of corers.
For instance, the Spin model checker has been recently enhanced support

such features, see (Holzmann et al., 2011; Holzmann, 2012).

7.3 Future Work

Preliminary work has been conducted. The experimental results demonstrate
the viability of the proposed approach. Its performance is adequate and pmis-

ing. In the following, a number of avenues of future investigation are sggested.

A number of dierent case studies were successfully applied inhis work to

demonstrate the practical applicability of our approach. An interesting avenue
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of further investigation is to push our approach to the limit by applyin g larger
case studies. This would be very useful to explore the industriaktrength of
the approach when it is applied to industrial examples. Then we couldgain
a better idea about the capability of the approach, including code and nodel

generation.

A time-triggered software architecture was employed to execute tk net in which
a single periodic interrupt is allowed in the system implemenation. Currently

the interrupt service routine (ISR) is modelled implicitly a voiding a detailed
modelling of the ISR. This simpli es our models and makes model chcking
more tractable. This however introduces pessimism into the modls by intro-
ducing wider time bounds on system computations. One direction for titure
work would be investigating the impact of including the ISR details explicitly

in the models. This can yield narrower bounds but the veri cation can be-
come more expensive since the size of the state space is expectedriorease.
Modelling the ISR explicitly can also provide more exibility i n the selection of
scheduling algorithms because this allows modelling the schedardin more detalil

and thereby makes a wider range of schedulers available to the code gaator.

Another avenue of investigation involves the application of software mode
checking directly on the generated code. This would require appiyng abstrac-
tion methods on the code such as counterexample-guided abstraction rement
(CEGAR) (Clarke et al., 2000). Then it would be interesting to compare the
tractability of our generated code to an existing software model chedkg tool
with that of code that is hand-crafted and implements the same functonality.
This would evaluate the generated code amenability for software modelrecking

technique.

A number of methods were proposed that ensure the atomicity of the data
update. The current case studies applied in the experimental chajer are not

a ected by the problem of data interruption because computations are ether
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short that complete within one tick, or long running that are not interr upted
by other computations. Future work on this work would require implementing
a chosen solution for the code generation, and testing it in di erent @se studies

that could encounter this problem.

The intermediate net representation of CANDLE is the base of the model ge-
erator and the code generator. One possible direction of further reseah is
to investigate optimisation techniques that can be applied to reducethe size
of the net. For example, in the translation of LOTOS to C programs, a col-
lection of optimisations have been applied on the control and data ow of an
intermediate Petri net stage (Garavel et al., 2011). It is interesting to inves-
tigate the applicability of such technigues (e.g, (Garavel and Serwg2006)) to
our net that is generated from bCANDLE. This would contribute both during
model-checking and code generation stage. In other words, the optingsl net
could yield a smaller executable code, and a possible reduction imé size of
the formal model. Although some techniques in (Kendall, 2001b) were appid
to tackle the problem of the state-space size, this approach could cordgr the
state-space explosion problem early before the model is generated. Aitidn-
ally, a nite state-machine (FSM) representation can be generated fom the net
representation in order to generate the executable code. Although wehink this
would have a considerable impact on the size of the generated code SmESM
has a higher representation cost compared to the Petri net, such codeould
be faster to execute. An example of comparison between FSM and Petri he
representation can be found in (Zhu and Brooks, 2009). The system develep
may then have an option to select between two alternative methodsa generate

the code.

For some scenarios, verifying the model of the whole system can be nobgsible
because of the state-space explosion problem. An interesting avenwé future

work would be incorporating compositional techniques to handle this poblem.
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In this approach of analysis, several components of the system can be mdigel

in more abstract way, and only one component is modelled in detail. After
that, we move to the next component and we do the same. If each of these
components considered in the abstract environment satis es some pragpties,
then we can claim that the composition of these components satis es alsohe
same properties. Some compositional methods have been already appli¢al
bCANDLE in the work of (Brockway, 2010). Therefore, extending the current

work to consider such techniques can be straightforward.

We proposed an approach that can automatically generate executable C from
speci cation of CAN-based system. In some industries such as automotive
aerospace, medical devices, and others, a particular software developmt stan-
dard is followed, speci cally for those systems that are programmed in COne
such example is the MISRA C standard (MISRA, 2004) which is mainly de-
veloped to ensure the products are suitable for application in the autmotive
industry. The MISRA C standard de nes a number of rules (constraints) in
using the C language on safety-related systems. We think that it is ineresting
for the industry that the code generator are able to produce a C code tht con-
forms to such standard. This feature would improve the code qualityand could

make the code generator more accepted by the previously mentioned indtries.

Multi-core platforms provide high performance computing capability compared
to traditional single-core platforms. They integrate many processors ora sin-
gle chip which are connected through a Network on Chip (NoC). For instance,
the Intel Single-Chip Cloud Computer (SCC) comprises of 48 cores on airggle
chip (Petrovt et al., 2012). Our approach facilitates executing a number of
processes in a single-processor platform via using the concept afchl channel
introduced in Chapter 3. The local channel has been already implemead us-
ing shared memory where the processes communicate by message pagsive

think it would be straightforward to extend this concept to leverage the power
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of multi-core platforms. Then each process could be executed on a smjate
processor (core) and communicate via local channels. This can o er an at-
native implementation option to the system developer to improve the overall

performance of the system implementation.

The CAN is the dominant network in automotive and factory control systems
and is becoming increasingly popular in robotic, medical and avionics app
cations. There are a wide variety of other broadcast protocols available in
practice, each is dedicated for a particular application area. For example
Pro bus (Tovar and Vasques, 1999) for process control, LON (Rabbie, 2005)
for building automation, and ZigBee (Baronti et al., 2007) for wireless sensor
network. It would be interesting to extend the current work to consider more
communication protocols than the CAN. The formal language bCANDLE has
been constructed with the CAN protocol in mind. The network model of the
language de nes a number of semantics rules to describe the networkelhaviour.
We think that these semantics rules should be revisited in order ¢ adopt the

behaviour of other network protocols.
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A. CASE STUDIES

In this section, we show the CANDLE program, the architecture descrigion,
the computations bounds, the bCANDLE model, and the net representation

respectively of the examples introduced in Chapter 6.

A.1 Flow Regulator System

CANDLE Program

Flow | Valve
where

Flow =
every 10000 do
readSensor();
snd(k, FLOW, fFlow)
end every

Valve =
loop do
rcv(k, FLOW, vFlow);
adjustValve()
end loop

Architecture Description

node flow
wordsize : 32
tickHz : 1000

processes : Flow
scheduler : COOPERATIVE
ports : CAN_O
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process Flow
stacksize : 20
channels : k -> CAN_O

node valve
wordsize @ 32
tickHz : 1000

processes : Valve
scheduler : COOPERATIVE
ports : CAN_O

process Valve

stacksize : 20

channels : k -> CAN_O
channel k

bps : 100000
messages : <FLOW:1>

Computations Bounds

readSensor 1000 1250
adjustValve 1000 1250

bCANDLE Model

(Flow | Valve)

where
Flow = __LOOP_O0
Valve = _LOOP__ 1

__LOOP__0 = (((([readSensor:1000,1250] ; k!FLOW.fFlow) ; idle)
[> [__timer__:10000,10000]) ; _ LOOP__0)

__LOOP__1 = ((k?FLOW.vFlow ; [adjustValve:1000,1250]) ; _ LOOP__1)

160
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Net Representation

\AZ

A.2 Steam Boiler Control System

CANDLE Program

WaterLevel | Pump | Controller
where

WaterLevel =
initSensor();
select
when rcv(k, START) => null
in
every 5000 do
snd(k, SENSOR_READY)
end every
end select;
select
when rcv(k, SHUTDOWN) => idle
in
every 10000 do
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case readSensor()
when 0 => snd(k, LEVEL_OK)
when 1 => snd(k, LEVEL_LOW)
when 2 => snd(k, LEVEL_HIGH)
end case
end every
end select

Pump =
initPump();
select
when rcv(k, START) => null
in
every 5000 do
snd(k, PUMP_READY)
end every
end select;
select
when rev(k, SHUTDOWN) => pumpOff(); idle
in
loop do
select
when rcv(k, PUMP_ON) => pumpOn()
when rcv(k, PUMP_OFF) => pumpOff()
end select
end loop
end select

Controller =
initController();
select

when rcv(k, SENSOR_READY) => rcv(k, PUMP_READY)
when rcv(k, PUMP_READY) => rcv(k, SENSOR_READY)

end select;
snd(k, START);
loop do
select
when rcv(k, LEVEL_OK) => null

when rcv(k, LEVEL_LOW) => snd(k, PUMP_ON)
when rcv(k, LEVEL_HIGH) => snd(k, PUMP_OFF)
timeout elapse(15000) => snd(k, SHUTDOWN); idle

end select
end loop

Architecture Description

node waterlevel

162
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wordsize : 32

tickHz 1 1000
processes : WaterLevel
scheduler : COOPERATIVE
ports : CAN_O

process WaterlLevel
stacksize : 25
channels : k -> CAN_O

node pump
wordsize : 32
tickHz 1 1000

processes : Pump
scheduler : COOPERATIVE
ports : CAN_O

process Pump
stacksize : 25
channels : k -> CAN_O

node controller
wordsize : 32
tickHz : 1000
processes : Controller
scheduler : COOPERATIVE
ports : CAN_O

process Controller
stacksize : 25
channels : k -> CAN_O

channel k
bps : 100000
messages : <START:0, SENSOR_READY:0, SHUTDOWN:0, LEVEL_HIGH:0, LEVEL_LOW:O0,
LEVEL_OK:0, PUMP_READY:0, PUMP_ON:0, PUMP_OFF:0>

Computations Bounds

initSensor 1000 1250
readSensor 1000 1250
initPump 1000 1250
pumpOn 1000 1250
pumpOff 1000 1250

initController 1000 1250
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testLevel 1000 1250

bCANDLE Model

(WaterLevel | (Pump | Controller))
where
WaterLevel =
([initSensor:1000,1250] ;
((_LOOP__0 [» (k?START._ ; [__nul__:0,0]) ;
(_LOOP__1 [> (k?SHUTDOWN._ ; idle))))

Pump =
([initPump:1000,1250] ;
((_LOOP__2 [> (K?START._ ; [__null__:0,0]) :
(__LOOP__3 [> (k?SHUTDOWN._ ; ([pumpOff:1000,1250] ; idle)))))

Controller =
([initController:1000,1250] ;
((k?SENSOR_READY._ ; k?PUMP_READY._) + (k?PUMP_READY._ ; k?SENSOR_READY. )) ;
(KISTART._ ; _ LOOP__4)))

__LOOP_ 0 =
((K'SENSOR_READY._ ; idle) [> [__timer__:5000,5000]) ; _ LOOP__0)

_LOOP_1 =
(((([L__result__readSensor:1000,1250] ;
(__of 0 -> kKILEVEL_OK.) + ((_gf 1 -> KILEVEL_LOW.) +
(_gf_2 -> KILEVEL_HIGH. )))) ; idle)
[> [_timer__:10000,10000]) ; _ LOOP__1)

__LOOP_ 2 =
((K'PUMP_READY._ ; idle) [> [__timer__:5000,5000]) ; _ LOOP__2)

_LooP__3 =
((k?PUMP_ON._ ; [pumpOn:1000,1250]) + (k?PUMP_OFF._ ; [pumpOff:1000,1250])) ; _ LOOP__3)

__LOOP__ 4 =
(((K?LEVEL_OK._ ; [__null__:0,0]) + ((k?LEVEL_LOW._ ; klPUMP_ON. ) +
((K?LEVEL_HIGH._ ; kIPUMP_OFF. ) +
([__timer__:15000,15000] ; (KISHUTDOWN._ ; idle))))) ; _ LOOP__4)

Net Representation
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A.3 Security Alarm System

CANDLE Program

Control | PendingTimer | Flasher | Display

where
Control =
loop do
select
timeout elapse(50000) => snd(k, CONTROL, controlMsg)
in
select
when rcv(k, PENDING_TIME, controlTimeLeft) => controlStatePendingTime()
in
case control()
when 0 => null
when 1 => snd(k, PENDING, controlTimelnterval)
when 2 => snd(k, ALERT)
when 3 => snd(k, ABORT)
end case;
idle
end select;
idle
end select
end loop
PendingTimer =
loop do
rcv(k, PENDING, ptTimeLeft);
trap
when PENDING_DONE => null
in
select
when rcv(k, ABORT) => exit PENDING_DONE
in
every 1000000 do
case pendingExpired()
when true => snd(k, PENDING_TIME, ptTimeLeft); exit PENDING_DONE
when false => snd(k, PENDING_TIME, ptTimeLeft)
end case
end every
end select
end trap
end loop
Flasher =
loop do

rcv(k, ALERT);
select
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when rcv(k, ABORT) => linkLEDOff()
in
every 250000 do
linkLEDToggle()
end every
end select
end loop
Display =
initDisplay();
loop do
rcv(k, CONTROL, displayMsg);
Display()
end loop

Architecture Description

node alarm
wordsize : 32
tickHz : 1000

processes : Control, PendingTimer, Flasher, Display
scheduler : ROUND_ROBIN
ports : LOCAL_DATA

process Control
stacksize : 25
channels : k -> LOCAL_DATA

process PendingTimer
stacksize : 25
channels : k -> LOCAL_DATA

process Flasher
stacksize : 25
channels : k -> LOCAL_DATA

process Display
stacksize : 128
channels : k -> LOCAL_DATA

channel k

bps : 100000
messages : <CONTROL:8, PENDING_TIME:8, PENDING:8, ALERT:8, ABORT:8>

Computations Bounds
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controlStatePendingTime 1000 1250

control 1000 1250
pendingExpired 1000 1250
linkLEDOff 1000 1250
linkLEDToggle 1000 1250
initDisplay 1000 1250

Display 10000 20250

bCANDLE Model

(Control | (PendingTimer | (Flasher | Display)))

where

Control = __ LOOP__ 0
PendingTimer = _ LOOP__1
Flasher = __ LOOP__3

Display = ([initDisplay:1000,1250] ; _ LOOP__5)

_LOOP_0 =
(((((([__result__control:1000,1250] ;
((Cof _0->[_null_:00] + ((__of 1 -> KIPENDING.controlTimelnterval) +
((C_gf 2 -> KIALERT._) + (__gf_ 3 -> kIABORT._))))) ; idle)
[> (k?PENDING_TIME.controlTimeLeft ; [controlStatePendingTime:1000,1250])) ; idle)
[> ([__timer__:50000,50000] ; kICONTROL.controlMsg)) ; _ LOOP__0)

__LOOP_1 =
((k?PENDING.ptTimeLeft ;
((_LOOP__2 [> (k?ABORT._ ; ([__exit_PENDING_DONE:0,0] ; idle)))
[> (_gx__PENDING_DONE -> [__null__:0,0]))) : _ LOOP__ 1)

__LOOP_ 2 =
(((([__result__pendingExpired:1000,1250] ;
((_of 1 -> (KIPENDING_TIME.ptTimeLeft ; ([__exit_ PENDING_DONE:0,0] ; idle))) +
(_gf 0 -> kIPENDING_TIME.ptTimeLeft))) ; idle)
[> [__timer__:1000000,1000000]) ; _ LOOP__ 2)

__LOOP__3 = ((k?ALERT._ ; (_LOOP_ 4 [> (k?ABORT._ ; [linkLEDOff:1000,1250]))) ; _ LOOP__3)

__LOOP__4 = ((([inkLEDToggle:1000,1250] ; idle) [> [__timer__:250000,250000]) ; _ LOOP__4)
__LOOP__5 = ((k?CONTROL.displayMsg ; [Display:10000,20250]) ; _ LOOP__5)

Net Representation
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A.4  Anti-lock Braking System

CANDLE Program

Control | Brake_0O | Brake_1 | Brake_2 | Brake_3 | Sensor_0 | Sensor_1 | Sensor_2 | Sensor_3
where

Control =
every 16000 do
snd(k, SPEED_REQ_0);
rcv(k, SPEED_0, sSpeed_0);
snd(k, SPEED_REQ _1);
rcv(k, SPEED_1, sSpeed_1);
snd(k, SPEED_REQ_2);
rcv(k, SPEED_2, sSpeed_2);
snd(k, SPEED_REQ_3);
rcv(k, SPEED_3, sSpeed_3);

case comput_acc()
when 0 => null
when 1 => ABS(); snd(k, PRESSURE, cPressure)
when 2 => ASR(); snd(k, PRESSURE, cPressure)
end case
end every

Brake 0 =
loop do
rcv(k, PRESSURE, bPressure);
adjustPressure_0()
end loop

Brake 1 =
loop do
rcv(k, PRESSURE, bPressure);
adjustPressure_1()
end loop

Brake_2 =
loop do
rcv(k, PRESSURE, bPressure);
adjustPressure_2()
end loop

Brake_3 =
loop do
rcv(k, PRESSURE, bPressure);
adjustPressure_3()
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end loop

Sensor_0 =
loop do
rcv(k, SPEED_REQ_0);
readSensor_0();
snd(k, SPEED_0, sSpeed_0)
end loop

Sensor_1 =
loop do
rcv(k, SPEED_REQ_1);
readSensor_1();
snd(k, SPEED_1, sSpeed_1)
end loop

Sensor_2 =
loop do
rcv(k, SPEED_REQ_2);
readSensor_2();
snd(k, SPEED_2, sSpeed_2)
end loop

Sensor_3 =
loop do
rcv(k, SPEED_REQ_3);
readSensor_3();
snd(k, SPEED_3, sSpeed_3)
end loop

Architecture Description

node control
wordsize : 32
tickHz : 1000
processes : Control
scheduler : COOPERATIVE
ports : CAN_O

process Control
stacksize : 125
channels : k -> CAN_O

node w_0
wordsize : 32
tickHz 1 1000

processes : Brake 0, Sensor_0
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scheduler
ports

: COOPERATIVE
1 CAN_O

process Brake_0

stacksize :

channels

25

1k -> CAN_O

process Sensor_0

stacksize :

channels

node w_1
wordsize
tickHz
processes
scheduler
ports

25

: k -> CAN_O

132

: 1000

: Brake_1, Sensor_1
: COOPERATIVE

: CAN_O

process Brake_ 1

stacksize :

channels

25

: k -> CAN_O

process Sensor_1

stacksize :

channels

node w_2
wordsize
tickHz
processes
scheduler
ports

25

: k -> CAN_O

132

: 1000

: Brake_2, Sensor_2
: COOPERATIVE

: CAN_O

process Brake_ 2

stacksize :

channels

25
: k -=> CAN_O

process Sensor_2

stacksize :

channels

node w_3
wordsize
tickHz
processes
scheduler
ports

25
: k -> CAN_O

1 32
: 1000

: Brake_3, Sensor_3
: COOPERATIVE
: CAN_O
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process Brake_3
stacksize : 25
channels : k -> CAN_O

process Sensor_3
stacksize : 25
channels : k -> CAN_O

channel k
bps : 100000
messages : <PRESSURE:4, SPEED_REQ_0:0, SPEED_0:1, SPEED_REQ_1:0, SPEED_1:1,
SPEED_REQ_2:0, SPEED_2:1, SPEED_REQ_3:0, SPEED_3:1>

Computations Bounds

comput_acc 1000 1250
ABS 1000 1250
ASR 1000 1250

adjustPressure_0 1000 1250
adjustPressure_1 1000 1250
adjustPressure_2 1000 1250
adjustPressure_3 1000 1250

readSensor_0 1000 1250
readSensor_1 1000 1250
readSensor_2 1000 1250
readSensor_3 1000 1250

bCANDLE Model

(Control | (Brake_0 | (Brake_1 | (Brake_2 | (Brake_3 |
(Sensor_0 | (Sensor_1 | (Sensor_2 | Sensor_3))))))))

where

Control = __ LOOP_0
Brake 0 = _ LOOP__1
Brake. 1 = _ LOOP_ 2
Brake 2 = _ LOOP__3
Brake_ 3 = _ LOOP_ 4
Sensor 0 = _ LOOP_ 5
Sensor_1 = _ LOOP__6
Sensor 2 = _ LOOP__ 7
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Sensor 3 = _ LOOP__8
_LOOP_0 =
(((K'SPEED_REQ_O._ ; (k?SPEED_0.sSpeed_0 ;
(K'SPEED_REQ_1._ ; (k?SPEED_1.sSpeed_1 ;
(KISPEED_REQ_2._ ; (k?SPEED_2.sSpeed_2 ;
(KISPEED_REQ_3._ ; (k?SPEED_3.sSpeed_3 ;
([__result__comput_acc:1000,1250] ;
(__of _0->[_null_:00] +

((_of 1 -> (JABS:1000,1250] ; k!PRESSURE.cPressure)) +
(_of 2 -> (JASR:1000,1250] ; KIPRESSURE.cPressure))))))))))))) ; idle)
[> [_timer__:16000,16000]) ; _ LOOP__0)
__LOOP__1 = ((k?PRESSURE.bPressure ; [adjustPressure_0:1000,1250]) ; _ LOOP__1)
__LOOP__2 = ((k?PRESSURE.bPressure ; [adjustPressure_1:1000,1250]) ; _ LOOP__2)
__LOOP__3 = ((k?PRESSURE.bPressure ; [adjustPressure_2:1000,1250]) ; _ LOOP__3)
__LOOP__4 = ((k?PRESSURE.bPressure ; [adjustPressure_3:1000,1250]) ; _ LOOP__4)
__LOOP__5 = ((k?SPEED_REQ 0._ ; ([readSensor_0:1000,1250] ; kISPEED_0.sSpeed_0)) ; _ LOOP__5)
__LOOP__6 = ((k?SPEED_REQ_1._: ([readSensor_1:1000,1250] ; kISPEED_1.sSpeed_1)) ; _ LOOP__6)

__LOOP__7 = ((k?SPEED_REQ_2._ ; ([readSensor_2:1000,1250] ; kISPEED_2.sSpeed_2)) ; _ LOOP__7)

__LOOP__8 = ((k?SPEED_REQ _3._ ; ([readSensor_3:1000,1250] ; kISPEED_3.sSpeed_3)) ; _ LOOP__8)

Net Representation
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B. UPPAAL MODELS

This section shows the generated UPPAAL models of the CAN communication
and the ow regulator example respectively.

B.1 The CAN Communication Model

Fig. B.1: The UPPAAL model of the CAN communication.

B.2 Flow Regulator System Model
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Fig. B.2: The UPPAAL model of the Flow process.

Fig. B.3: The UPPAAL model of the Valve process.



C. C SOURCE CODE

In this section, we present the C source code of the interrupt seice routine
(ISR), and the generated C code of the ow regulator example, respectely.

C.1 The C code of the ISR

1/

2 file: bc.h
3 /

4

5 #ifndef __BC_H

6 #define __BC_H

7

8 #include <stdbool.h>

9 #include <stdint.h>

10 #include <bcport.h>

11

12 enum bcGuardMasks f

13 BC_.GUARD EXCEPTION FLAG 0x80000000U ,

14  BC_.GUARD EXCEPTION _RESULT MASK = OX7FFFFFFFU,

15 g;

16

17 typedef uint32_t bcResult_t;

18

19 typedef uint32_t bcGuardSelect_t;

20

21 typedef void ( bcComputation _t)( void );

22

23 typedef struct bcNCB f

24 uint32_t ptos; / pointer to top of stack; must be first
field /

25 int32_t index; /  index to transition for current
computation /

26 / 0 : no current computation /

27 / t : computation ongoing for transition

t
28 / 't : computation completed for
transition t /



29

30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66

67

68

69

C. C source Code

bcResult_t result; / if the computation is a function, store

the result here /
g bcNCB_t;

typedef struct bcPCB f

179

of

uint32_t index; /I Index set as follows:
0 if data is stale,
1 if data is fresh and channel is external
p if p is the place number of trigger
sender transition
and data is fresh
and this is a LOCAL channel
/
bcPortCanMessaget message;
g bcPCB._t;
typedef enum bcAttributeType f

BC_TICK,
BC_IDLE,
BC_COMP,
BC_DELAY,
BC_GFUN,
BC_GEXN,
BC_.GVAR,
BC_EXIT,
BC_SEND,
BC_RECV
g bcAttributeType _t;

Attributes should be assigned as follows:

BC_TICK attribute should be 0; ignored
BC_IDLE attribute should be 0; ignored
BC_COMP attribute should be pointer to function for this

computation
BC_DELAY attribute should be initial value of delay
BC_GFUN attribute should be 0 for negative guard, 1 for

positive guard and between 2 and 255 for exception guard

BC_GEXN attribute should be 0 for negative guard, 1 for

positive guard and between 2 and 255 for exception guard

BC_GVAR attribute should be 0 for negative guard, 1 for

positive guard and between 2 and 255 for exception guard

BC_SEND attribute should be address of a CAN message variable
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70 BC_RECV attribute should be address of a CAN message variable
71 /

72 typedef uint32_t bcAttribute _t;

73

74

75 typedef struct bcTimer f

76 uint32_t index; / index to transition for current timer /
77 / 0 : timer not active [/

78 / t : timer for transition t /
79 uint32_t value; / current value for active timer /
80 /' undefined for inactive timer /
81 g bcTimer_t;

82

83

84 extern bcResult_t volatile bcExceptionResult;

85

86 void bclSR(void );

87 void bcRunSystem(void );

88 void bcNullComputation( void ) ;

89 void bcldleComputation( void );

90

91

92

93 #endif

1/

2 file: bc.c

3 /

4

5 #include <stdbool.h>
6 #include <assert.h

7 #include <bc.h>

8 #include <bcport.h>

9 #include <bcgen.h

10 #include <bcbitset.h>

11

12 bcResult.t volatile bcGuardResult = 0;
13

14 #ifdef BCGEN _CAN _REQUIRED

15

16 static bcPortCanMessaget sendBuffer;
17 static uint32_t port;

18 static uint32_t len;

19 static uint32_t msgld;

20 static uint8_t from;

21 static uint8_t to;

22

23 #endif



24
25

26 static void fire(uint32 _t p);
27 static void scheduleNextComputation( void );
28
29 void bcISR(void ) f
30 int32_t i;
31 int32_t j;
32 bool stable = false;
33 bcGenPlaceSett lastMarking;
34
35 / Just starting the ISR /
36 bcPortISREntryHook () ;
37
38 #ifdef BCGEN _TIMERS REQUIRED
39
40 |/ update soft timers /
41 for (i=0; i < BCGEN_N_TIMERS; i+=1) f
42 if (bcGenTimers[i].index != 0) f
/ timer is active...

43 bcGenTimers[i].value = 1;

count /
44 g
45 g
46
47 #endif
48
49 #ifdef BCGEN _CAN_REQUIRED
50
51 |/ update external port control blocks /
52  for (i=0; i < BCGEN _NEXTERNAL PORTS; i+=1) f
53 if (bcPortCanReady(i)) f
54 bcPortCanRead (i, &cGenPCB[i]. message);
55 bcGenPCB[i].index = 1;
56 g
57 else f
58 bcGenPCBJ[i].index = 0;
59 g
60 g
61
62 |/ mark all local port control blocks as stale /
63 for (i=BCGEN N_EXTERNAL PORTS; i<BCGEN N_PORTS; i+=1)
64 bcGenPCBJ[i].index = 0;
65 g
66

C. C source Code

static void react(uint32_t p);

/ ...So0 decrement

67 #endif

f

181
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68
69 / react to marked places /
70 #if defined (BCGEN DEBRUIIN)

71 f

72

73 See C. Leiserson, H. Prokop, and K. Randall.

74 Using de Bruijn sequences to index a 1 in a computer
word.

75 MIT Laboratory for Computer Science, 1998

76 for an explanation of this approach to identifying the bit
number

77 of the rightmost 1 in a computer word. Used here to identify
the

78 currently marked places during the reaction cycle.
Preliminary

79 tests suggest that it's about 30% quicker than testing every
bit

80 for this application.

81

82 It seems to slow the ISR by about 2.5% if you declare the
following array as

83 const (and hence force it into flash).

84 /

85 static uint32_t debruijn[32] =

86 fo, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,

87 31, 27, 138, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10,99

88

89 uint32_t offset = 0;

90 uint32_t word = 0;

91 uint32_t rightmostBitVal = 0;

92 uint32_t place = 0;

93

94 bool firstlteration = true; // Used to detect the first
iteration of while loop.

95

96 while (!stable) f

97 for (i = 0; i < BCGEN_NPLACE WORDS; i+=1) f

98 lastMarking[i] = bcGenMarked[i];

99 g

100 for (i = 0, offset = 0; i < BCGEN _NPLACE WORDS; i+=1,
offset+=32) f

101 word = bcGenMarked[i];

102 while (word != 0) f

103 rightmostBitVal = (word & ( word)) ;

104 word = rightmostBitVal;

105 place = debruijn[((rightmostBitVal 0x077CB531) > 27)] +

offset;
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106 react(place);

107 #ifdef BCGEN _TIMERS _-REQUIRED

108 for (j=0; j <BCGEN _N_TIMERS; j+=1) f

109 if (!(bitTest(bcGenMarked, bcGenTimers[j].index))) f

110 bcGenTimers[j].index = 0;

111 g

112 g

113 #endif

114 g

115 g

116 stable = true;

117 for (i = 0; i < BCGEN_NPLACE WORDS; i+=1) f

118 if (bcGenMarked[i] != lastMarking[i]) f

119 stable = false;

120 break ;

121 g

122 g

123

124 #ifdef BCGEN _CAN_REQUIRED

125 /[ mark all external port control blocks as stale after the
first iteration /

126 if (firstiteration = true) f

127 for (i=0; i <BCGEN N_EXTERNAL PORTS; i+=1) f

128 bcGenPCB[i].index = 0;

129 g

130 firstlteration = false;

131 g

132

133 for (i=BCGEN N_EXTERNAL PORTS; i<BCGEN_NPORTS; i+=1) f

134 bcGenPCB[i].index = 0;

135 g

136 #endif

137

138 g

139 ¢

140

141 #else

142 while (!stable) f

143 for (i = 0; i < BCGEN_NPLACE WORDS; i+=1) f

144 lastMarking[i] = bcGenMarked[i];

145 g

146 for (i=0; i < BCGEN_N_PLACES; i+=1) f

147 if (bitTest(bcGenMarked, i)) f

148 react(i);

149 g

150 g

151 stable = true;
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152 for (i = 0; i < BCGEN_NPLACE WORDS; i+=1) f
153 if (bcGenMarked[i] != lastMarking[i]) f
154 stable = false;

155 break ;

156 g

157 g

158 ¢

159 #endif

160

161 |/ schedule next computation /

162 scheduleNextComputation () ;

163

164 / About to leave the ISR /

165 bcPortISRExitHook () ;

166 g

167

168 static void react(uint32 _t p) f

169 uint32_t tindex = bcGenTransitions|[p].index;
170

171  switch (bcGenTransitions[p].type) f

172 case BC.DLE : f

173 bcGenNCB[tIindex ].index = 0; / allow the scheduler to
pass over this computation if it wants /
174 break ;
175 ¢
176 case BCCOMP : f
177 if (bcGenNCB[tlndex].index < 0) f
178 / computation has been scheduled but is not yet complete;
nothing to do /
179 g
180 else if (bcGenNCB[tindex].index = 0) f / computation should
be scheduled /
181 bcGenNCB[tindex].index = p; /' show computation
has been scheduled but is not completed /
182 bcGenNCB[tIindex ]. ptos = bcGenComputationlnit(tinde x,
(bcComputation _t)bcGenTransitions[p]. attribute);
183 g
184 else f / (bcGenNCB[tIndex].index > 0) so computation has been
completed /
185 bcGenNCB[tindex ].index = 0; / ...so0 reset index to
show computation is no longer active... /
186 fire(p); [ ...fire the
transition /
187 g
188 break ;
189 ¢

190 case BCDELAY : f
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191 #ifdef BCGEN _TIMERS REQUIRED

192 if (bcGenTimers[tindex].index != 0) f / timer is active [/
193 if (bcGenTimers[tindex].value = 0) f / ... and has expired
/
194 fire(p);
195 bcGenTimers[tindex].index = 0;
196 g
197 g
198 else f / start the timer /
199 bcGenTimers[tindex].index = p;
200 bcGenTimers[tindex]. value =
(uint32 _t)bcGenTransitions[p]. attribute ;
201 g
202 #endif
203 break ;
204 g
205 case BCGFUN : f
206 if ((bcGuardSelect_t)bcGenNCB[tindex].result =
(bcGuardSelect_t)bcGenTransitions[p]. attribute) f / this
guard selected ... /
207 [/ bcGuardResult = bcGenNCB[tIndex].result;
save the result in case it's an exception /
208 fire(p);
/... and fire transition /
209 g
210 break ;
211 g
212 case BCGVAR : f
213 if (((int32 _.t)bcGenTransitions[p]. attribute = INT32 _MAX) jj
(( (bcGuardSelect_.t )tlndex =
(bcGuardSelect_t)bcGenTransitions[p]. attribute))) f
/ this guard selected ... /
214 fire (p);
/... so fire transition /
215 g
216 break ;
217 g

218 case BCGEXN : f
219 #ifdef BCGEN _EXN _REQUIRED

220 if (bcGenECB[tIindex] & (1 <
(uint32 _t)bcGenTransitions[p]. attribute)) f
/| exception is raised ... /
221 bcGenECB[tIndex] & ~(1 <

(uint32 _t)bcGenTransitions[p]. attribute);
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/ ... clear the exception
/
222 fire(p);
/... and fire transition /
223 g
224 #endif
225 break ;
226 g

227 case BCEXIT : f
228 #ifdef BCGEN _EXN _REQUIRED
229 bcGenECB[tIndex] j= (1 <
(uint32 _t)bcGenTransitions[p]. attribute);
/ raise the exception

230 fire (p);
/ ... and fire transition /
231 #endif
232 break ;
233 ¢

234 case BCSEND : f
235#ifdef BCGEN _CAN_REQUIRED

236 port = (tindex & 0x00000007);

237 len = ((tiIndex >> BCGEN _MSG_LEN _OFFSET) & 0x0000000F);

238 msgld = tindex > BCGEN _MSG_ID _OFFSET;

239 from = (uint8 _t )bcGenTransitions[p]. attribute;

240

241 if ((BCGEN NEXTERNAL PORTS > 0) & (port <
BCGEN N_EXTERNAL PORTS)) f

242 uint32_t i;

243 to = (uint8 _t )&sendBuffer.dataA;

244 for (i=len; i != 0; i ) f

245 to+ = from++;

246 g

247 sendBuffer.id = msgld;

248 sendBuffer.len = len;

249 bcPortCanWrite (port, &sendBuffer);

250 fire (p);

251 g

252 else f

253 uint32_t i;

254 if (bcGenPCB[port].index = 0) f

255 bcGenPCB[ port].index = p;

256 to = (uint8 _t )&:cGenPCB[port]. message.dataA;

257 for (i=len; i != 0; i ) f

258 to+ = from++;

259 g

186
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260
261
262
263
264

bcGenPCB|[ port]. message.id = msgld;
bcGenPCB|[ port]. message.len = len;

fire(p);

g

265 #endif

266
267
268

break ;

case BCRECV : f

269 #ifdef BCGEN _CAN_REQUIRED

270 port = (tindex & 0x00000007);
271 msgld = tindex > BCGEN _MSG_ID _OFFSET;
272 if ((bcGenPCB[port].index !'= 0) &&
/[ fresh
data available /
273 (bcGenPCB[ port]. message.id = msgld)) f
/ and
matching id /
274 uint32_t i;
275 len = ((tindex > BCGEN_MSG_LEN _OFFSET) & 0x0000000F);
276 assert(len = bcGenPCB[port]. message.len);
| check that

we've got the right number of bytes /
277 to = (uint8 _t )bcGenTransitions[p]. attribute ;
278 from = (uint8 _t )&cGenPCB[port]. message.dataA;
279 for (i=len; i 1= 0; i ) f

/ copy to the user data variable /
280 to+H = from++;
281 g
282 fire(p);

/[ and fire the transition /
283 g
284 #endif
285 break ;
286
287  default
288 assert(false); /[ should not happen /
289
290 g
291
292 static void fire (uint32 _t p) f
293 bcGenTransition_t t = bcGenTransitions[p];
294 uint32_t i;
295
296 bitClear (bcGenMarked, p);
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297 for (i = 0; i < BCGEN_NPLACE WORDS; i++) f
298 bcGenMarked[i] & ~(t.vulnerable[i]);
299 bcGenMarked[i] j= t.target[i];

300 g

301 g

302

303

304 static uint32_t scheduleNextNCBindex = 0;
305

306 #if defined (BCGEN _SCHEDULE ROUND _ROBIN)

307 static void scheduleNextComputation(void ) f

308 if (++scheduleNextNCBindex =— BCGEN _N_NETS) f
309 scheduleNextNCBindex = 1;
310 g
311
312 if (bcGenNCB|[scheduleNextNCBindex].index != 0) f / there is a
computation to consider /
313 if (bitTest(bcGenMarked,
(bcGenNCB [ scheduleNextNCBindex].index))) f
314 bcGenCurrentNCBPtr = &cGenNCB[scheduleNextNCBinde x]; /
trigger still marked so schedule this computation /
315 g
316 else f
317 bcGenNCB [ scheduleNextNCBindex]. index = 0; [ trigger
no longer marked; abandon this computation /
318 bcGenCurrentNCBPtr = &cGenNCB[0]; /[ and
schedule the idle computation /
319 g
320 g
321 else f
322 bcGenCurrentNCBPtr = &-cGenNCB[0]; /' no
computation available here; schedule the idle computation
/
323 g
324 g
325
326 #elif defined (BCGEN _SCHEDULE FIXED _PRIORITY)
327
328 static void scheduleNextComputation(void ) f
329 scheduleNextNCBindex = 0;
330 while (++scheduleNextNCBindex < BCGEN_N.NETS) f
331 if (bcGenNCB|[scheduleNextNCBindex].index != 0) f
332 if (bitTest(bcGenMarked,
(bcGenNCB|[scheduleNextNCBindex]. index))) f
333 bcGenCurrentNCBPtr = &cGenNCB[scheduleNextNCBinde x]; /
trigger still marked so schedule this computation /

334 return ;
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335
336
337

338
339
340
341

342 g
343

g
else f
bcGenNCB|[scheduleNextNCBindex].index = 0; /
trigger no longer marked; abandon this computation
g
g
g
bcGenCurrentNCBPtr = &cGenNCB[0]; /[ no

computation available; schedule the idle computation /

344 #elif defined (BCGEN _SCHEDULE _COOPERATIVE)

345

346 static bool coroutineRunning = false;

347

348 void bcCoroutine(void ) f

349
350
351
352
353
354
355
356

357
358

359

360
361
362
363
364

365
366
367
368

369
370 g
371

bcNCB_t volatile savedNCBPtr = bcGenCurrentNCBPtr;
int32_t tindex = 0;
int32_t index = 0;

coroutineRunning = true;
while (++scheduleNextNCBindex < BCGEN _N_NETS) f
tindex = (bcGenNCB[scheduleNextNCBindex].index);
if (tindex != 0) f
/ there is a computation to consider /
if (bitTest(bcGenMarked, tindex)) f
bcGenCurrentNCBPtr = &cGenNCB[scheduleNextNCBinde x];

/ trigger still marked so ... [/
((bcComputation _t)bcGenTransitions[tindex]. attribute) () ;
/... run the computation /
index = bcGenCurrentNCBPtr >index;
bcGenCurrentNCBPtr >index = index;
g
else f

bcGenNCB|[scheduleNextNCBindex].index = 0;
/ trigger no longer marked; abandon this computation

g
bcGenCurrentNCBPtr = savedNCBPtr;

/' no more computations available; return /
coroutineRunning = false;

372 bool bcExecutingAsCoroutine(void ) f

373
374 g

return coroutineRunning;

189

/
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375

376

377 static void scheduleNextComputation(void ) f

378 scheduleNextNCBindex = 0;

379 while (++scheduleNextNCBindex < BCGEN_N.NETS) f

380 if (bcGenNCB|[scheduleNextNCBindex].index != 0) f

381 if (bitTest(bcGenMarked,
(bcGenNCB[scheduleNextNCBindex].index))) f

382 bcGenCurrentNCBPtr = &cGenNCB[scheduleNextNCBinde x]; /
trigger still marked so schedule this computation /

383 return ;

384 g

385 else f

386 bcGenNCB|[scheduleNextNCBindex]. index = 0; /
trigger no longer marked; abandon this computation /

387 g

388 g

389 g

390 bcGenCurrentNCBPtr = &cGenNCB[0]; /[ no

computation available; schedule the idle computation /

391 g

392

393 #else

394

395#error : No scheduling policy defined

396

397 #endif

398

399

400 void bcRunSystem(void ) f

401 bcPortBSPinit() ;

402 bcGenStacklnit() ;

403 bcPortTimerlnit();

404 bcPortStartSystem () ;

405 g

406

407

408 void bcNullComputation( void ) f

409 int32_t index = bcGenCurrentNCBPtr >index;

410 bcGenCurrentNCBPtr >index = index;
411 bcldleComputation () ;

412 g

413

414

415 void bcldleComputation( void ) f
416  while (true) f
417 g
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418 g

C.2 The C code of the ow node

1/

2 File: bcgen.h of flow node.

3

4

5#ifndef _BCGEN_H

6 #define _BCGEN _H

7

8 #include <bcport.h>

9 #include <bc.h>

10

11/

12 Define the tick rate for the ISR
13/

14 #define BCGEN _TICK HZ 1000

15

16 /

17 Define BCGEN _TIMERS REQUIRED to include code for use
18 of soft timers

19 |/

20 #define  BCGEN _TIMERS _REQUIRED

21

22

23/

24 Define BCGEN _CAN_REQUIRED to include code for communication
25 between processes either via CAN or locally
26/

27 #define  BCGEN _CAN REQUIRED

28

29

30

31/

32 Define BCGEN DEBRUWN to choose fast iteration through marked

places in the
33 main loop in the ISR

34

35 #define BCGEN -DEBRUIIN
36

37

38 / Must define one of BCGEN_SCHEDULE ROUND ROBIN or
BCGEN _SCHEDULE _FIXED _PRIORITY
39 or BCGEN _SCHEDULE COOPERATIVE or BCGEN _SCHEDULE HYBRID
40 |/
41 #define  BCGEN _SCHEDULE _ROUND _ROBIN

191
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42

43 #if defined (BCGEN _SCHEDULE COOPERATIVE)
defined (BCGEN _SCHEDULE HYBRID)

44 void bcCoroutine (void );

45 bool bcPrimaryCoopcCall( void );

46 bool bcSecondaryCoopCall(void );

47 #endif

48

49 enum f

50 BCGEN_N_NETS =2,

51 BCGEN_N_PLACES =4,

52  BCGEN_N_PLACE WORDS =1,

53 BCGEN_N_TIMERS =1,

54  BCGEN_N_PORTS =1,

55 BCGEN_N_EXTERNAL _PORTS =1,

56 BCGEN_MSG_ID OFFSET =7,

57  BCGEN_MSG_LEN OFFSET =3,

58 BCGEN_N_STACK WORDS = 40

59 g;

60

61 typedef bcPortWord -t bcGenPlaceSet_t [BCGEN N_PLACE WORDS];

62

63 /

64 The index field in bcGenTransition _.t below has a variety of
uses.

65 It depends on the attribute type and

66

67 BC_TICK index should be 0; ignored

68 BC_IDLE index should be O0; ignored

69 BC_COMP index should be index of the NCB that owns this

computation

70 BC_DELAY index should be index of the soft timer tracking

i]

is set as follows:

id_offset) j

192

this delay
71 BC_GUARD index should be index of the NCB that owns this guard
72 BC_SEND index should be ((message id<
(message len<< len_offset) j pcb id)
73 BC_RECV index should be as for BCSEND
74
75
76 attribute should be set as defined in bc.h
77

78 typedef struct bcGenTransition f
79 bcAttributeType _t type;

80 uint32_t index;

81 bcGenPlaceSett vulnerable;

82 bcAttribute _t attribute;

83 bcGenPlaceSett target;
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84 g bcGenTransition _t;
85
86
87 extern bcNCB_t volatile bcGenNCB[BCGEN N_NETS];
88 extern bcNCB_t volatile volatile bcGenCurrentNCBPtr;
89 extern bcTimer_t volatile bcGenTimers[BCGEN N_TIMERS];
90 extern bcPCB_t bcGenPCB[BCGEN N_PORTS];
91 extern bcGenPlaceSett bcGenMarked;
92 extern bcGenTransition .t const bcGenTransitions [BCGEN N_PLACES];
93
94 void bcGenStacklnit( void );
95 uint32_t bcGenComputationlnit(uint32 _t net, bcComputation _t comp);
96
97 / User procedure and function prototypes
/
98
99 void bcGenCompT2(void );
100
101 #endif
1/
2 File: bcgen.c of flow node.
3 1/
4

5#include <stdint.h>
6 #include <bc.h>

7 #include <bcport.h>
8 #include <bcgen.t>
9 #include <user.h>

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

static void computationDone(void );

static uint32_t stack [BCGEN N_STACK WORDS];
static uint32_t const stackBaselndex [BCGEN.N.NETS] = f39, 19g;

bcNCB_t volatile bcGenNCB[BCGEN N_NETS] = f

f(uint32_t )0, 0, (bcResult_t)0g,

f(uint32_t )0, 0, (bcResult_t)0g

g;

bcNCB_t volatile volatile bcGenCurrentNCBPtr = &cGenNCB[0];

bcPortWord -t bcGenMarked [BCGEN N_PLACE WORDS] = f
0x0000000CU

g9;

bcGenTransition_t const bcGenTransitions [BCGEN N_PLACES] = f
fBC_IDLE, 0, fOx00000000Ug, (bcAttribute _t)bcldleComputation,
f 0x00000000Ugyg,
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29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56

57
58
59
60

61
62
63
64
65
66
67

68
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fBC_SEND, (uint32 _t)((0 << BCGEN_MSG._D OFFSET) j (sizeof (fFlow)
<< BCGEN _MSG_LEN OFFSET) j 0), f0x00000000Ug,
(bcAttribute _t)&fFlow, f0x00000000Ugg,

fBC.COMP, 1, fOx00000000Ug, (bcAttribute _t)bcGenCompT2,
f 0x00000002Ugg,

fBC_DELAY, 0, fOx00000006Ug, (bcAttribute _t)10, f0x0000000CUgg

g9;

bcTimer_t volatile bcGenTimers[BCGEN N_TIMERS] = f
fOU, 0OUg
g;

bcPCB_t bcGenPCB[BCGEN N_PORTS] = f
fou, fOU, OU, OU, OUgg

void bcGenStacklnit( void ) f
uint32_t i;

for (i=0; i <BCGEN_NNETS; i+=1) f

if (i > 0)f
/ Put some stack markers in to help debugging /
stack[stackBaselndex[i]+1] = OxFEEDFACE;

g

bcGenNCB|[i]. ptos =
bcPortComputationlnit(&stack [ stackBaselndex[i]],

bcldleComputation);

g
stack [0] = OxFEEDFACE;

uint32_t bcGenComputationlnit(uint32 _t net, bcComputation _t
comp) f

return bcPortComputationlnit(&stack [stackBaselndex[net]], ¢ omp);
g
/ User procedure calls

/

void bcGenCompT2(void ) f

readSensor();

computationDone () ;
g
/ Local functions
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69 static void computationDone(void ) f

70 int32_t index = bcGenCurrentNCBPtr >index;

71

72 bcGenCurrentNCBPtr >index = index;

73 #if defined (BCGEN _SCHEDULE COOPERATIVE) jj
defined (BCGEN _SCHEDULE HYBRID)

74 if (bcPrimaryCoopCall()) f

75 bcCoroutine () ;

76 g

77 else if (bcSecondaryCoopCall()) f

78 return ;

79 g

80 #endif

81 bcldleComputation () ;

82 ¢

C.3 The C code of the valve node

1/

2 File: bcgen.h of valve node.
3 1/

4

5 #ifndef _BCGEN_H

6 #define _BCGEN_H

7

8 #include <bcport.h>

9 #include <bc.h>

10

11/

12 Define the tick rate for the ISR
13/

14 #define BCGEN_TICK _HZ 1000

15

16 /

17 Define BCGEN _TIMERS REQUIRED to include code for

18 of soft timers
19 |/

20

21/

22 Define BCGEN_CAN_REQUIRED to include code for communication
23 between processes either via CAN or locally

24/

25 #define  BCGEN _CAN _REQUIRED
26

27

28

29 /

use

195
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30 Define BCGEN DEBRUWN to choose fast iteration through marked

places in the
31 main loop in the ISR

32/

33 #define BCGEN DEBRUIIN
34

35

36 / Must define one of BCGEN_SCHEDULE ROUND ROBIN or
BCGEN _SCHEDULE _FIXED _PRIORITY
37 or BCGEN _SCHEDULE COOPERATIVE or BCGEN _SCHEDULE HYBRID
38 |/
39 #define  BCGEN _SCHEDULE ROUND _ROBIN
40
41 #if defined (BCGEN _SCHEDULE COOPERATIVE) jj
defined (BCGEN _SCHEDULE HYBRID)
42 void bcCoroutine (void );
43 bool bcPrimaryCoopcCall( void );
44 bool bcSecondaryCoopCall(void );
45 #endif
46
47 enum f
48 BCGEN_N_NETS =2
49  BCGEN_N_PLACES =3
50 BCGEN_N_PLACE WORDS =1
51 BCGEN_N_PORTS =1,
52  BCGEN_N_EXTERNAL _PORTS =1
53 BCGEN_MSG._ID OFFSET =7
54  BCGEN_MSG_LEN OFFSET =3
55  BCGEN_N_STACK WORDS = 40
56 g;
57
58 typedef bcPortWord -t bcGenPlaceSet_t [BCGEN N_PLACE WORDS];
59

60 /

61 The index field in bcGenTransition _.t below has a variety of
uses.

62 It depends on the attribute type and is set as follows:

63

64 BC_TICK index should be O0; ignored

65 BC_IDLE index should be 0; ignored

66 BC_COMP index should be index of the NCB that owns this
computation

67 BC_DELAY index should be index of the soft timer tracking

this delay

196

68 BC_GUARD index should be index of the NCB that owns this guard

69 BC_SEND index should be ((message id<< id_offset) j
(message len<< len_offset) j pcb id)
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70 BC_RECV index should be as for BCSEND
71

72

73 attribute should be set as defined in bc.h
74 ]

75 typedef struct bcGenTransition f
76 bcAttributeType _t type;

77 uint32_t index;

78 bcGenPlaceSett vulnerable;

79 bcAttribute _t attribute;

80 bcGenPlaceSett target;

81 g bcGenTransition _t;

82

83

84 extern bcNCB_t volatile bcGenNCB[BCGEN N_NETS];

85 extern bcNCB_t volatile volatile bcGenCurrentNCBPtr;

86 extern bcPCB_t bcGenPCB[BCGEN N_PORTS];

87 extern bcGenPlaceSett bcGenMarked;

88 extern bcGenTransition _t const bcGenTransitions [BCGEN N_PLACES];
89

90 void bcGenStacklnit( void );

91 uint32_t bcGenComputationlnit(uint32 _t net, bcComputation _t comp);
92

93 / User procedure and function prototypes

94

95 void bcGenCompT2(void );
96

97 #endif

1/

2 File: bcgen.c of valve node.

3

4

5 #include <stdint.h>

6 #include <bc.h>

7 #include <bcport.h>

8 #include <bcgen.h>

9 #include <user.h

10

11 static void computationDone( void );

12

13 static uint32_t stack [BCGEN N_STACK WORDS];
14 static uint32_t const stackBaselndex[BCGENNNETS] = f39, 19g;
15

16 bcNCB_t volatile bcGenNCB[BCGEN N_NETS] = f
17 f(uint32_t )0, 0, (bcResult_t)0g,

18 f(uint32_t )0, 0, (bcResult_t)0g
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22
23
24
25
26
27

28

29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55

56
57
58
59
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g;
bcNCB_t volatile volatile bcGenCurrentNCBPtr = &cGenNCB[O0];
bcPortWord _t bcGenMarked [BCGEN N_PLACE WORDS] = f
0x00000002U
g;
bcGenTransition_t const bcGenTransitions [BCGEN N_PLACES] = f
fBC_IDLE, 0, fOx00000000Ug, (bcAttribute _t)bcldleComputation,
f 0x00000000Ugg,
fBC_RECV, (uint32 _t)((0 << BCGEN_MSG._D OFFSET) |j (sizeof (vFlow)
<< BCGEN_MSG_LEN OFFSET) j 0), f0x00000000Ug,
(bcAttribute _t)&Flow, f0x00000004Ugg,
fBC.COMP, 1, fOx00000000Ug, (bcAttribute _t)bcGenCompT2,
f 0x00000002Ugg
g;
bcPCB_t bcGenPCB[BCGEN N_PORTS] = f
fou, fou, 0OU, 0OU, OUgg
g;
void bcGenStacklnit( void ) f
uint32_t i;
for (i=0; i <BCGEN_NNETS; i+=1) f
if (i > 0)f
/  Put some stack markers in to help debugging /
stack[stackBaselndex[i]+1] = OxFEEDFACE;
g
bcGenNCB[i]. ptos =
bcPortComputationinit(&stack [ stackBaselndex[i]],
bcldleComputation);
g
stack [0] = OxFEEDFACE;
g
uint32_t bcGenComputationlnit(uint32 _t net, bcComputation _t

comp) f

return bcPortComputationlnit(&stack [stackBaselndex[net]], ¢ omp);
g
/ User procedure calls
/
void bcGenCompT2(void ) f

adjustVvalve () ;
computationDone () ;
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60 g
61
62 / Local functions

63

64 static void computationDone(void ) f

65 int32_t index = bcGenCurrentNCBPtr >index;

66

67 bcGenCurrentNCBPtr >index = index;

68 #if defined (BCGEN _SCHEDULE COOPERATIVE) jj
defined (BCGEN _SCHEDULE HYBRID)

69 if (bcPrimaryCoopCall()) f

70 bcCoroutine () ;

71 g

72 else if (bcSecondaryCoopCall()) f
73 return ;

74 g

75 #endif

76 bcldleComputation () ;
77 ¢
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