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1. Summary

In the era when large whole genome bacterial datasets are generated routinely,
rapid and accurate molecular systematics is becoming increasingly important.
However, 16S ribosomal RNA sequencing does not always offer sufficient res-
olution to discriminate between closely related genera. The SsgA-like proteins
are developmental regulatory proteins in sporulating actinomycetes, whereby
SsgB actively recruits FtsZ during sporulation-specific cell division. Here, we
present a novel method to classify actinomycetes, based on the extraordinary
way the SsgA and SsgB proteins are conserved. The almost complete conser-
vation of the SsgB amino acid (aa) sequence between members of the same
genus and its high divergence between even closely related genera provides
high-quality data for the classification of morphologically complex actinomy-
cetes. Our analysis validatesKitasatosporas a sister genus toStreptomycesn
the family Streptomycetaceae and suggests thatMicromonospora Salinispora
and Verrucosisporanay represent different clades of the same genus. It is also
apparent that the aa sequence of SsgA is an accurate determinant for the ability
of streptomycetes to produce submerged spores, dividing the phylogenetic tree
of streptomycetes into liquid-culture sporulation and no liquid-culture sporula-
tion branches. A new phylogenetic tree of industrially relevant actinomycetes is
presented and compared with that based on 16S rRNA sequences.

2. Introduction

The next-generation sequencing revolution has seen the number of genome
sequences publically released accelerate at an extraordinary rate, with microbial

Electronic supplementary material is availablgenomes published on a daily basis [1]. At present, even sequencing the meta-
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genomes of complex microbial environments seems almost common place. Still,
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we are only at the beginning, and new technological advances
will further accelerate the accumulation of genome sequence
information. The sequences of some 8000 bacterial genomes
are publically available, including many organisms classi-
fied in the phylum Actinobacteria [2]. Members of this taxon,
notably streptomycetes, produce around 70% of known anti-
biotics, and are therefore an important asset in the fight
against emerging antibiotic resistance [3,4]. Following the pub-
lication of the genome sequence of the model actinomycete
Streptomyces coelicol&3(2) a decade ago [5], the sequences
of alarge number of Streptomyceand other actinobacterial gen-
omes have been made available (http:/www.genomesonline.
org). These developments underline the need for rapid and, at
the same time, accurate classification of these commercially
and environmentally significant organisms.

Current approaches to the classification of prokaryotes are
based on the integrated use of genotypic and phenotypic
data, that is, on polyphasic taxonomy [6—8]. This approach
is being driven increasingly by advances in molecular
biology, as witnessed by the impact that 16S rRNA gene
sequence and DNA:DNA relatedness values are having
on the delineation of taxa, especially at the rank of species
[9,10]. The widespread use of polyphasic taxonomic pro-
cedures has led to spectacular improvements in the
classification of taxa belonging to the phylum Actinobacteria
[2]. Despite this progress, significant problems remain, and
with so many related species in genera such asStreptomyces
the resolution offered by 16S rRNA and associated phenoty-
pic markers is not always sufficient for the recognition of new
taxa. There is a particular need to establish the taxonomic
status of closely related genera within morphologically com-
plex actinomycetes, such as those classified in the families
Micromonosporaceae and Streptomycetaceae [11,12]. There
is, for instance, a pressing requirement to determine whether
the genus Streptomycesis paraphyletic or whether the
inclusion of Kitasatosporand Streptacidiphilusspecies within
the evolutionarily radiation of this taxon merely reflects
insufficient variation in the constituent 16S rRNA gene
sequences [13]. Indeed, the circumscription of genera, as
opposed to species, is currently highly subjective within the
prokaryotes as a whole [14].

Recent observations suggest that highly conserved
sequences of the SsgA-like proteins (SALPs), which play an
important role in morphogenesis and control of developmen-
tal cell division in actinomycetes with complex life cycles,
may provide a reliable means of distinguishing between
members of closely related actinobacterial genera [15,16].
A number of streptomycetes, such asStreptomyces granaticolor
Streptomyces griseuyStreptomyces roseospoarsd Streptomyces
venezuelgesporulate not only on surface-grown but also in
liquid-grown cultures [17-19]; comparative analyses of the
highly conserved protein sequences may establish whether
such organisms are evolutionarily more strongly related to
one another than to streptomycetes which sporulate only
on surface-grown culture.

Members of the SALP protein family are typically bet-
ween 130 and 145 amino acids (aa) long, with 30—-50% aa
identity between them. SALPs occur exclusively in morpho-
logically complex actinomycetes, and there is a suggested
linkage between the number of paralogues and the complexity
of the developmental process in these organisms [16,20]. Acti-
nomycetes that produce single spores typically contain a single
SALP (invariably SsgB), those that produce short spore chains

typically have two, and those that undergo more complex

development typically have multiple SALPs; Frankiaspecies,
which produce a large sporangium, have three to five SALPs
and Streptomycespecies, which form long spore chains, gener-
ally have six to eight SALPs. The model organism S. coelicolor :
A3(2) contains seven SALPs (SsgA-G), and of these, SsgA,;
SsgB and SsgG are cell division proteins, with SsgA and SsgB
essential for sporulation [21,22]; SsgD is required for cell wall
integrity; SsgE and SsgF play a role in spore maturation; and
SsgC may act as an antagonist of SsgA [23].

SsgA was identified as a sporulation protein in S. griseus
[24], and enhanced expression of SsgA affects fragmentation :
of mycelia in liquid-grown cultures [25,26]. SsgA is required '
for both solid- and liquid-culture sporulation of streptomy-
cetes and is a key connection between these two types of :
cell division. SsgA localizes to the sites where cell-wall remo-
delling takes place and is involved in the activation of spore
germination and cell division [27]. SsgB is the archetype of
the SALPs as it is found in all actinomycetes that have one
or more of these proteins [16]. The crystal structure of SsgB
from Thermobifida fuscavas determined at 2.6 A resolution
[28]. This revealed a bell-shaped trimer with intriguing struc-
tural similarity to the mitochondrial guide RNA-binding
proteins MRP1 and MRP2 [29] and the ssDNA-binding
protein PBF-2 [30]. The SsgB protein is part of the cell div-
ision machinery and recruits the cell division scaffold
protein FtsZ to initiate sporulation-specific cell division in
an SsgA-dependent manner [31]. SsgB shows an extraordi-
nary pattern of conservation. It is extremely well conserved
within a single genus, with a maximum of one aa variation
between all of the SsgB orthologues identified in streptomy-
cetes, whereas between genera the conservation is often as
low as 40—-50%. This makes SsgB an ideal tool for molecular
systematics, especially at the generic level.

In this paper, we demonstrate the usefulness of SsgA and
SsgB phylogeny for the accurate taxonomic classification of
morphologically complex actinomycetes, and apply this
new tool to add resolution to the taxonomy of several actino-
mycete species. Our data suggest thatKitasatospords very
closely related to, but distinct from, the genus Streptomyces
and that MicromonosporaSalinisporaand Verrucosisporanay
be congeneric.

3. Results and discussion

3.1. Distribution of SsgA-like proteins in actinc

SALPs are found exclusively in sporulating actinomycetes
and in other morphologically complex actinomycetes such
as Kineococcug[16]. In addition, detailed analysis of all
sequenced genomes of the non-sporulating actinomycetes
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Bifidobacterium, Corynebacterium, Mycobacterium, Nocardia

and Rhodococcugailed to identify proteins with relevant

sequence homology (i.e. higher than roughly 25% aa iden-
tity). Further studies revealed the presence of a single SALP
in genera that produce one or two spores per hyphae (such
as Micromonospora, Salinisporar Thermobifid or complex
morphological structures (Kineococcysand multiple SALPs
in actinomycetes that produce multiple spores on hypha
(exemplified by Streptomycesnd Saccharopolyspgrar multi-

sporous sporangia (Frankig (see electronic supplementary
material, table S1). Thus, a rule of thumb has emerged,


http://www.genomesonline.org
http://www.genomesonline.org
http://www.genomesonline.org

namely that a single SALP (SsgB) correlates with the presence
of single spores along hyphae, two SALPs with two spores
and multiple SALPs with multiple spores [16]. However, a
few exceptions to this concept have now been found, namely
Catenulispora acidiphiland Nocardiopsis alhawhich contain
a single SALP but form spore chains, and some species of
Micromonosporawhich only have SsgB but produce sporangia.
So far, investigations on the function of the SALPs have focused
on Streptomycesand more molecular and cell biological
research is required to better understand the precise function
of the SALPs in additional genera such as those mentioned ear-
lier. A phylogenetic tree of actinomycetes is presented in the
electronic supplementary material, figure S1.

Interestingly, some proteins have been identified that con-
tain a C-terminal SALP domain. In S. griseusin addition to the
canonical SSgABDEG, three SALP-domain-containing proteins
were identified (Sgr_128 and the identical proteins Sgr_41t and
Sgr_7098t) that are around 650 aa long; the first around 520 aa
lack a recognizable protein domain. A 487 aa SALP-domain-
containing protein (SBD_2172) was identified in Streptomyces
bottropensiATCC 25435, which appears to be a distant hom-
ologue of the long SALPs from S. griseus showing 35% aa
identity in its N-terminal 90 residues to Sgr_128. The sequence
of plasmid PSEDO2 from Pseudonocardia dioxanivora@81190
[32] revealed a gene encoding an SALP (Psed_7011) that is
translationally fused to a so-called wbl gene (Pset_7010), for
a WhiB-like protein. Homology of this protein is highest to
WhiB itself (69% aa identity). This provides evidence for a
functional relationship between SALPs and WhiB-like
proteins, which are both developmental proteins.

The sporulation activator protein SsgAwas previously con-
sidered unique to streptomycetes, where it activates the
localization of SsgB to initiate sporulation-specific cell division
[31]. In fact, five of the SALPs found in S. coelicolgrnamely
SsgA, SsgB, SsgD, SsgE and SsgG, have orthologues in all or
almost all streptomycetes [23], although ssgGis missing in
Streptomyces avermitilisA-4680", Streptomycesp. el4 and
Streptomyces griseoflavdgi4000. Only SsgB and the related
SsgG are generally found in other actinomycetes [16,28].
Some Streptomyceggenomes encode a rather large number
of SALPs, e.g. eight SALPs are encoded by the genomes
of Streptomyces viridochromogend@sie57 and Streptomyces
turgidiscabieCar8, nine for Streptomyces svicedsTCC 29083,
10 for Streptomyces davawensl€EM 4913, and a remarkable
14 for Streptomyces hygroscopicsigosp. jinggangensi$008.

The precise translational start sites ofssgAand ssgBare still
subject to debate, which is relevant to this work in terms of the
subjects for phylogenetic analysis. Our recent mutational
analysis (N.M. & G.P.v.W. 2013, unpublished data) revealed
that most likely two of the three possible AUG translational
start sites for ssgAare usedin vivo, corresponding to nucleo-
tide (nt) positions 4319474 and 4 319504 on the genome of
S. coelicoloA3(2) (further referred to as S. coelicoldr The trans-
lational start site annotated in the genome database (nt
position 4 319501) is almost certainly incorrect, as shown by
in vivo mutation data and by the fact that in several streptomy-
cetes it is an ATC codon, which cannot function as a
translational start codon. In line with many genome-sequence
annotations, we use the shorterssgAgene product for our phy-
logenetic analysis (i.e. corresponding to nt position 4 319 504 in
S. coelicolgr The ssgBgene has two alternative translational
start sites, which correspond to nt positions 1650311 and
1 650 377 in theS. coelicologenome. Because a transcriptional

start site was identified downstream of the upstream-located
alternative start codon [33], we will refer to the second (down-
stream) alternative start codon as the translational start site, °
and hence use the shorter SsgB protein for our analysis. How- :
ever, it should be noted that the 22 triplets between the two
alternative start codons are completely conserved even at the
nt level between all streptomycetes.

3.2. SsgB as a novel and reliable phylog

for sporulating actinomycetes

SsgB is most likely the ancestral SALP, with only SsgB ortholo-
gues occurring in all morphologically complex actinomycetes
[15,31,34]. SsgB orthologues are extremely well conserved in :
streptomycetes, and are typically identical except for residue
128 (GIn, Throrin rare cases Lys; see electronic supplementary :
material, figure S2). Exceptions areStreptomyces pristinaespiralisf
ATCC 25486 Streptomyces rimosssibsp. rimosusATCC 10970
and Streptomyces acidiscabi84—104, which all contain an
additional S137N mutation at the C-terminal residue, and
S. venezuela®TCC 10712, which has a unique but conser-
vative E136D substitution. The evolutionary pressure for the
conservation of the aa sequence is even more apparent by the
relatively high nucleotide divergence, with 25-30 silent
mutations, which are almost exclusively found in the third
(wobble) position of the codons. Analysis of the dy/ ds ratio
of ssgBorthologues across the actinomycetes indicates that
weak purifying selection (dy/ dsratio, 1) is acting as a func-
tional constraint across the gene family; however, phylum
level analysis of dy/ ds is inaccurate owing to the relatively
high sequence divergence at the nucleotide level in these genes.

Comparison of maximum-likelihood trees of two standard
taxonomic indicators, namely 16S rRNA (figure 1) and RpoB
(the b-subunit of RNA polymerase [35]; figure 2), with that of
SsgB (figure 3) indicates that the clades consistently group
together (terminal branches) within the accepted taxonomic
framework [11] as operational taxonomic units (OTUSs). The
congruence analysis using CONCATERPILLAR [36] revealed
a phylogenetic congruence between RpoB and SsgB protein
sequences p¥%0.2771); however, 16S rRNA nucleotide
sequences were topologically incongruent with them (p¥a
0.0015). Interestingly, the groupings of the OTUs are consistent
between all the trees, yet the branches indicate the overall phylo-
genetic history of the genes is likely to be different. The reasons
for this can be attributed to gene duplication and gene loss, and
to lateral gene transfer, where genes are exchanged between
lineages [37,38]. Indeed, expansion of developmental gene
families in actinomycetes through duplication has been studied
previously [39].
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3.3. Taxonomic status of tiiggenayaospora

SalinisparaVerrucosispora

Itis also interesting that the SsgB proteins from the generaActi-
noplanes Micromonospora Salinisporaand Verrucosisporaare
nearly identical, a result that underlines the close relationship
found between these members of the family Micromonospora-
ceae [40,41]. The next nearest relative isStackebrandtia
nassauensi®SM 44728, with only around 65% aa identity
to SsgB from Micromonosporaceae. We did not observe
notable differences in the phylogenetic analysis of the
Micromonosporaceae with or without the sequences from
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accession numbers, see the electronic supplementary material, data file S1.

Stack. nassauensfeot shown). The low homology of SsgB is
very interesting, because the genusStackebrandtidelongs to
the order of Glycomycetales, which is loosely associated with
the order Micromonosporales based on 16S rRNA gene
sequence data [11]. Such a high divergence of SsgB orthologues
between relatively closely related genera allows rapid discrimi-
nation between morphologically close actinomycetes. This
deduction is strongly supported by the analysis of concatenated
sequences of 35 broadly distributed proteins as the type strain of
Stack. nassauens@med a clade with Micromonospora aurantiaca
ATCC 27029 and a representative of the genusSalinisporathis
taxon was supported by a 100% bootstrap value [42].

The SsgB proteins from M. aurantiacaATCC 27029 and
Micromonosporsstrain L5 are identical, but two aa changes
are found in Micromonosporatrain ATCC 39149. Interestingly,
Micromonosporand Verrucosisporapecies have identical SsgB
proteins, whereas 25 polymorphic nucleotides exist between
the genes (table 1), similar to the differences found between
SsgB orthologues from different Streptomycespecies (maxi-
mum one aa change, and 25—30 polymorphic nucleotides).
The SsgB sequences suggest thlicromonosporand Verruco-
sisporastrains may belong to the same genus Salinispora tropica

SsgB has only one aa variation compared with the SsgB from
Salinispora arenicola, Micromonosporand Verrucosispora
species, but at the nt level the divergence betweersS. arenicola
and S. tropicais much lower than that between S. tropicaand
the other genera, indicating that Salinisporaspecies diverged
from Micromonosporand Verrucosisporand may form a sep-
arate clade. The three genera can also be distinguished from
one another based on comparisons of fatty acid, menaquinone
and sugar profiles [43,44] and Salinisporafrom the other two
by its requirement for seawater for growth [40,41]. Finally,
members of the genus Polymorphosporare strongly related
to Micromonospord45], and it would be very interesting to
see how closely it relates to the other Micromonosporaceae,
and in particular to the genus Micromonosporain terms
of the SsgB sequence homologies and their implications
for phylogeny.

3.4. Taxonomic status of tHeaganospora

The difficulty of accurately classifying closed related actino-
mycetes at the generic level is exemplified by the genus
Kitasatosporawhich was first proposed by Omura et al [46],
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accession numbers, see the electronic supplementary material, data file S2.

subsequently reduced to a synonym of the genusStreptomyces
[47] and then re-established as a separate genus [48]. The
status of the genusKitasatospordias still to be resolved [12],
as exemplified by the fact that while members of the two
genera form sister clades when using conservedrpoB gene
sequencesKitasatosporapecies were assigned to a large, stat-
istically unsupported clade in the Streptomycesl6S rRNA
gene tree [13]. Indeed, Labeda and co-workers considered
that Kitasatosporanight only be seen as taxonomically valid

if the genus Streptomycegroved to be polyphyletic.

To resolve this intriguing taxonomic dilemma, we com-
pared the SsgB orthologue (KSE_14600) identified in the
genome of Kitasatospora setakM-6054" [49] with that of
streptomycetes. This identified three to four aa changes rela-
tive to the StreptomycesSsgB orthologues (see electronic
supplementary material, figure S1), and some 50 nt changes
relative to the ssgBDNA consensus sequence (see electronic
supplementary material, figure S4). This divergence is cer-
tainly significant considering that only a single aa substitution
was found in all SsgB orthologues from streptomycetes, but
it does not provide conclusive evidence that Kitasatospora
should retain its status as a separate genus. However, further

analysis of the genome of K. setaerevealed no fewer than 12
genes encoding SALPs; these include orthologues ofssgA
(KSE_39770) andssgG(KSE_28490), both with strong gene syn-
teny with the respective orthologues of S. coelicolorbut ssgD
and ssgE which are found in all streptomycetes, may be
absent. It is particularly interesting that KSE_39770 shares
52—-57% end-to-end aa identity with SsgAs from streptomy-
cetes (table 2). This is significantly lower than the sequence
homology between StreptomycesSsgA orthologues—which
typically share 75-90% aa identity, and never lower than
64% (table 2)—but it is high enough to suggest that they may
be functional homologues [16]. Gene synteny evidence (see
electronic supplementary material, figure S5) shows that it is
a true ssgAorthologue, as the flanking genes correspond well
to those surrounding ssgAin S. coelicolgrwith the upstream
gene (KSE_39760) encoding an orthologue of SsgR (58% aa
identity), the transcriptional activator of ssgAin S. coelicolor
[50]. Gene rearrangements around ssgRA (SC03925-3926)
resulted in movement of SC0O3922-3924 from upstream of
ssgR to downstream of ssgA KSE_39750, which lies
immediately downstream of ssgRin K. setagis an orthologue
of SCO3918. Analysis of other Kitasatosporaspecies in our
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Figure Maximum-likelihood tree based on the alignment of SsgB proteins from a range of morphologically complex actinomyce

accession numbers, see the electronic supplementary material, data file S3.

collection revealed that not all Kitasatosporapecies contain an
ssgA and/or ssgR orthologue, suggesting that ssgA is
perhaps becoming obsolete in this genus (G.G. & G.P.v.W.
2013, unpublished data). Strikingly, like some Kitasatospora
species, the streptomyceteS. cattleydacks an ssgAgene. It is
yet unclear how these species sporulate without ssgA in
other words how these species compensate for its absence,
and what the precise implications are from the perspective of
taxonomy. These issues are currently under investigation in
our laboratory.

The three aa changes in the SsgB orthologues, coupled with
the rpoBand 16S rRNA data, indicate that the generaKitasato-
sporaand Streptomyceare closely related, but distinct genera.
The case for considering them as sister taxa is supported by
the unique presence of ssgRand ssgA orthologues—which
have not yet been found outside streptomycetes.

3.5. Classification of other actinomycetes

High conservation within specific actinomycete genera is also
observed for the SsgB orthologues in the plant symbiont

Frankia (see electronic supplementary material, figure S6).
The SsgB orthologues from Frankia alniACN14a, Frankiasp.
EAN1pec, Frankiasp. EUN1f and Frankiasp. CN3 show one
or two mismatches to the consensus sequencefrankia sp.
Ccl3 and QA3 have four permutations and the symbiont of
the Durango root Datisca glomeratdias seven. Considering
the relatively high divergence of the latter, it would be of
great interest to determine how closely related this Datiscasym-
biont is to well-studied members of the genus Frankia It is
apparent from figure 1 that the SsgB proteins of the representa-
tives of the generaAcidothermus, Blastococcus, Geodermatophilus
and Nakamurellaare related both to one another and to the
Frankiastrains, a result in line with 16S rRNA sequence data
[11], but not with a phylogenetic tree based on concatenated
sequences of conserved proteins [51].

The SsgB orthologue ofStreptomycespecies AA4 is remote
to that of streptomycetes (49% aa identity over a stretch of 122
residues), and is identical to that of Amycolatopsis decaplanina
DSM 44594’; this organism has recently been reclassified as
an Amycolatopsispecies based on other criteria [52], further
supporting the taxonomic validity of SsgB as a marker.



Table IHomology between SsgB orthoMguesieaspora, Sadindseoracosisppegies. Percentage of SsgB aa identity is pjjjgjjnte:
parentheses are the total number of aa and nt changes, respectively.
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3.6. Correlation bebiveptomyicpsd-culture

morphology and the SsgA protein seque,éi%e@e

SsgA proteins from different streptomycetes generally share
between 75% and 90% end-to-end sequence identity, with few
differences between the N-termini, and regions with higher
variability in the core (approx. residues 53—92 of S. coelicolor
SsgA) and the C-termini (approx. beyond residue 110) of
the proteins (figure 4). SsgA from Streptomyces clavuligerus
ATCC 27064 is the most distinct of all sequenced orthologues,
with a sequence identity to other orthologues varying from
63% (compared with Streptomyces collinugnd Streptomyces
ramocissimusSsgA) to 73% (compared with S. venezuelae
SsgA). SsgA proteins fromS. coelicoloand Streptomyces lividans
TK24 are identical, whereas their genes contain a single nucleo-
tide difference (His42 encoded by CAT in S. coelicoloand by
CAC in S. lividang. More notably, the predicted SsgA ortho-
logues from S. griseusand S. roseosporuare also identical,
whereas 17 ‘silent’ nucleotide differences occur between their
respective DNA sequences, suggesting evolutionary pressure
to maintain the aa sequence.

Streptomycetes can be divided morphologically in terms
of their liquid-culture morphology into species that produce
clumps or mycelial mats, and those that are able to form sub-
merged spores [34]. SeveralStreptomycespecies form spores
in submerged cultures, including S. granaticolor, S. griseus
S. roseosporuand S. venezuelafl7—-19]. The latter category
can be subdivided into streptomycetes that only sporulate
in minimal medium and typically after nutritional shift-
down, with S. griseusas a well-known example [19], and
those that always produce submerged spores, including in
a rich medium, represented by among others S. venezuelae
[18]. In a recent survey of species in our own strain collection,

we discovered many others, including the putatively novel

tomycespp. Chel, Che26, Gre 19 and Gre54 studied
se results indicate that submerged sporulation is
much more common than previously thought.

Interestingly, in the phylogenetic tree, SsgA proteins from
strains that produce typical mycelial clumps but fail to produce
submerged spores cluster together in a branch, designated
NLSp (figure 5a). In a second branch, designated LSp, only
SsgA proteins are represented that were derived from strains
that can sporulate in submerged culture (figure 5a). The SsgA
lineages are designated type | and type IlI, correlating with
NLSp and LSp phenotypes, respectively. Streptomyces albus
and S. clavuligerusproduce large, open mycelial structures
but do not form submerged spores. Phylogenetic analysis indi-
cates that these species do not belong to either of the two
branches, and several clear differences between their primary
sequences and those from the other orthologues are apparent
(figure 5a).

These results led us to wonder whether strains that spor-
ulate in submerged cultures are evolutionarily more strongly
related to one another than to those that only sporulate on
surface-grown cultures. To analyse this, we performed a com-
parison of the 16S rRNA sequences of 3%Btreptomycespecies.
In the 16S rRNA phylogenetic tree, similar branches as seen
for SsgA proteins are less obvious (figure 3). For example,
S. granaticolarwhich sporulates profusely in submerged cul-
ture and should in that sense be close toStreptomyces netropsis
and S. venezueldd8,53), is classified among the NLSp species
based on its 16S rRNA sequence, whereas conversely,
ATCC3309 (which fails to sporulate in submerged culture)
is classified among the LSp species according to the 16S
rRNA sequence. These data reveal that there is complete cor-
respondence between the SsgA protein sequence and the
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Table ZProtein sequence homology (% aa identity/similarity) between SsgA orthologues. Horizontal axis presents accession numbers (in genome database nomenclature), and tf

that all strains ekéesatospusStreptomysmEies. For input sequences and their accession numbers, see the electronic supplementary material, data “le S4.
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ability of streptomycetes to sporulate in submerged culture,
though this is not the case for the 16S rRNA tree. In other
words, changes in the SsgA aa sequence provide very good
linkage to distinct morphological characteristics of strepto-
mycetes, rather than highlighting only the evolutionary
divergence. Closer analysis identified significant differences
in the primary sequence of SsgA orthologues from the LSp
or the NLSp branches, respectively. Six residues are particu- :
larly noteworthy: Gly53, Cys56, Ala/Val66, Leu75, GIn/
His84 and Aspl125 residues occur exclusively in orthologues
from the NLSp branch, whereas orthologues from the LSp
branch contain Asn53, Ser56, His/Ser75, Arg84 and Gly125 :
residues in the corresponding positions (figures 4 and 5).
Interestingly, none of these six residues was identified as
essential for SsgA function in a previous mutational study,
where ssgA null mutants were complemented with random
mutant ssgAvariants [54]. This strongly suggests that these :
amino acids provide additional functionality to SsgA,
which correlates with submerged sporulation.

Submerged sporulation has generally been considered
as an exception rather than a common trait among streptomy-
cetes. However, our analysis of some 50 taxonomically diverse
Streptomycespecies show that more than half produced sub-
merged spores in minimal medium, and many also in a rich
medium. As shown earlier, this ability to form submerged
spores can be predicted by reading six letters in the aa code
of the SsgA primary sequence. This implies that the biological
activity of the type | and type Il SsgA proteins may be different.
Indeed, we previously showed that overexpression of the type |
SsgA from S. coelicoloand S. lividansdoes not have a major
effect on liquid culture morphology of S. coelicolgrwhereas
the overexpression of a type Il SsgA from S. griseugesults in
hyphal fragmentation and even induced the formation of
spore chains in submerged cultures of S. coelicolof22,26,55].
Replacement of the chromosomal copy ofssgAof S. coelicolor
by that of S. griseugdid not confer the ability to produce sub-
merged spores, but resulted in less densely packed clumps in
submerged culture (N.M. & G.P.v.W. 2013, unpublished
data). Thus, the effect of SsgA on hyphal morphology appears
to be dictated by its aa sequence.

Another striking link between SALP protein sequences
and liquid culture morphology is seen in the permutations
that occur in residue 128 of SsgB. Much to our surprise, we
found that all Streptomycespecies of the LSp type have an
SsgB orthologue with a Thr128, whereas those of the NLSp
type have an SsgB with GIn128. The only exception is the
NLSp S. avermitilis MA-4680", which also carries a T128.
This coincides with the absence ofssgG a direct functional
homologue of ssgB in this species. The exciting implication
of a direct relationship between specific aa residues of SsgA
and SsgB on the one hand and submerged sporulation on
the other hand offers new insights into the function of
SsgA and SsgB in the control of Streptomyceslevelopment
and to the development of strains for industrial processes.
This phenomenon is currently under investigation.

3.7. Concluding remarks

It is becoming increasingly clear that prokaryotic systematists
need to re-evaluate their practices in the light of the plethora
of information derived from sequencing whole genomes and
conserved proteins [10,51,56,57]. This study is a tangible
expression of this need as it has been shown that SsgA and
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Figure 4Alignment of SsgA orthologues. Only those SsgA protein sequences have been used as input that are derived from
submerged cultures. For shading, at least 60% of the aligned proteins should share the same or similar aa residues. Identical r
shaded grey. Residues highlighted with an asterisk above the alignment, are conserved within,but different between,the ¢LSp:
and function as identifiers for the abilit$éptoeriEEsies to sporulate in submerged culture. Sequences were labelled by their ¢
sequence labels see §4.2. For input sequences and their accession numbers, see the electronic supplementary material, d:

SsgB proteins present in morphologically complex actinomy- markers as an excellent evidence-based way of distinguishing
cetes are the source of high-quality molecular data that can between closely related genera of actinomycetes, as exempli-
be used to resolve relationships between diverse genera classi- fied by the distinction between Kitasatosporand Streptomyces
fied in the class Actinobacteria [2]. Our work highlights the Additional comparative studies based on representatives of

importance of combining molecular systematic and traditio- genera classified in taxa such as the orders Frankiales and
nal taxonomic approaches, in accordance with the work of Micromonosporales [11,51] can be expected to help resolve

others [58,59], to identify chemotaxonomic and morphological longstanding taxonomic enigmas.
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It is also apparent from this and earlier studies that SALPs
are crucial for developmental cell division in actinomycetes;
thus, whereas one SALP (SsgB) suffices to form a single
spore, multiple (three or more) SALPs are required to coordi-
nate the production of longer spore chains or sporangia. It
would be interesting to determine whether multiple SALPs
can trigger the production of multisporous structures in
actinomycetes that normally produce single spores or fail to
form spores at all. Conversely, combinations of ssgmutants
in, for example, S. coelicolomay result in streptomycetes
forming single spores or short spore chains. This interesting
concept should be tested and if verified would provide
very strong experimental proof for the phylogenetic evidence.

With the rapidly emerging genome sequences, new SALP
sequences are highlighted weekly. We expect that analysis
of the sequences of the SALPs will facilitate the accurate
taxonomic classification of sporulating actinomycetes.

4. Material and methods

4.1. Strains and medium

Streptomycesstrains Chel, Che26, Grel9 and Gre54 were
isolated from French forest soils in the Loire department
(close to the castles of Cheverny and Chambord) and L13
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Figure 5Continyed.

from soil of the Canary Island Lanzarote. For initial isolation of
actinomycetes, soil suspensions were spread onto humic acid
agar plates [60] supplemented with the antifungal agent nysta-
tin (50 mgmi?Y) and the antibacterial agent nalidixic acid
(10mg mI?%). All of these organisms sporulated abundantly
on routine medium such as SFM, R2YE or MM (minimal
medium) agar plates supplemented with glycerol (1% w/v)
as the sole carbon source [61]. Streptomycetes were grown
under routine conditions as described by Kieser et al [61]. To
analyse the ability of streptomycetes to sporulate in submerged
culture, they were grown in TSBS (tryptic soy broth with
sucrose) or modified MM supplemented with mannitol [62],
and TSBS-grown cultures were subjected to nutritional shift-
down, which induces submerged sporulation [19]. For this, cul-
tures were spun down, washed in MM and transferred to MM
with glycerol or mannitol (1% w/v) as the sole carbon source.
Submerged spores were harvested by filtration to remove myce-
lial biomass, checked by their ability to germinate, and plated
next to the original strains to confirm their identity. Microscopy
was performed as described previously [63]. Cultures were

checked at regular intervals by phase contrast microscopy
using a Zeiss Standard 25 microscope and colony morphology
was studied using a Zeiss Lumar V-12 stereo microscope.

4.2. Sequence alignment and phylogenomic

All predicted sequences (aa and nt) were downloaded from
the NCBI database (www.nchi.nlm.nih.gov) on 13 February
2013. Nucleotide and protein sequences in FASTA format
and their accession numbers are presented in the electronic
supplementary material, data files S1-S5. Homologues were
identified by BLASTP against the non-redundant protein
sequence database using SsgB frons. coelicoloA3(2) (acces-
sion number NP_625820) as a query and by searching the
Gene database on NCBI for proteins with an SsgA domain
(Pfam 04686) in each organism of interest.

Alignment of SsgB, 16S rRNA and RpoB sequences was
generated using MUSCLE [64] with default options, followed
by manual editing. The neighbour-joining trees [65] were
generated with default parameters settings as implemented
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in MEGA v. 4.0 [66]. The maximum-likelihood trees were
made using the best fit models predicted by MEGA: 16S
rRNA tree using GTRp Gp |, RpoB using rtREVp Gp

I b F and the SsgB tree following the WAGp G p | model,
all with four discrete gamma categories and a complete del-
etion of missing nucleotides/amino acids. Tree reliability
was estimated by bootstrapping with 500 replicates. The
groupings that are supported by poor bootstrap values are
not reliable. Therefore, we have collapsed the internal
branches with a bootstrap value of less than 50% to generate
consensus trees using MEGA [66] to emphasize the reliable
branching patterns.

(ds) and non-synonymous sites (dy) were calculated with Jukes
and Cantor correction for the nucleotide sequence alignment of
ssgBgene using DNaSP [67] to calculatedy/ ds ratios. Align-
ments shown were visualized with B oxS+ape v. 3.21 (http:/
www.ch.embnet.org/software/BOX_form.html) or E BioX
tools (http:/www.ebioinformatics.org/ebiox/).
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sequences and RpoB and SsgB protein sequences was tested
using CONCATERPILLAR [36]. The distances at synonymous
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