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Abstract. The propagation of linear Alfvén wave pulses in an inho-
mogeneous plasma near a 2D coronal null point is investigated. When
a uniform plasma density is considered, it is seen that an initially pla-
nar Alfvén wavefront remains planar, despite the varying equilibrium
Alfvén speed, and that all the wave collects at the separatrices. Thus, in
the non-ideal case, these Alfvénic disturbances preferentially dissipate
their energy at these locations. For a non-uniform equilibrium density, it
is found that the Alfvén wavefront is signi cantly distorted away from
the initially planar geometry, inviting the possibility of dissipation due
to phase mixing. Despite this however, we conclude that for the Alfvén
wave, current density accumulation and preferential heating still primar-
ily occur at the separatrices, even when an extremely non-uniform density
pro le is considered.

Key words. Magnetohydrodynamics (MHD)—waves—magnetic fields—
Sun: atmosphere—corona.

1. Introduction

MHD wave propagation within amhomogeneous mediugia fundamental plasma
process and the study of MHD waves in the neighbourhood of magnetic null points
directly contributes to this area (see McLaugtginal. 2011afor a comprehensive
review of the topic)Null pointsare weaknesses in the magnetic eld at which the
eld strength, and thus the Alfvén speed, is zeBaparatricesare topological fea-

tures that separate regions of different magnetic connectivity, and are an inevitable
consequence of the isolated magnetic ux fragments in the photosphere. The number
of resultant null points depends upon the complexity of the magnetic ux distribu-
tion, but tens of thousands are estimated to be present (see for e.q.eCibh 2904
Longcope2005 Régnieret al. 2008 Longcope & Parnel2009.

In addition, MHD wave perturbations are ubiquitary in the solar corona (e.g.
Tomczyket al. 2007 and a variety of observations have clearly demonstrated the
existence of wave activity for all three of the basic wave modes; namely Alfvén
waves and fast and slow magnetoacoustic waves. That the waves exist is no longer
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in doubt but the surprising fact is that these are generally rapidly damped. Waves in
an uniform magnetic eld and plasma have extremely long damping lengths and so
the explanation for the observations must lie in the non-uniform nature of the solar
corona. Non-thermal line broadening and narrowing due to Alfvén waves have been
reported by various authors, including Banergal. (1998, Erdélyiet al. (1998,
Harrisonet al. (2002 and O’Sheeet al. (2003 2009. The role of Alfvén waves

in coronal heating through dissipation and observed spectral line broadening has
been reported both analytically (e.g. Dwivedi & Srivasta@6 and more recently
numerically (e.g. Chmielewsldt al. 2013and references therein).

Thus, MHD waves and magnetic topologill encounter each other in the corona
(e.g. waves emanating from a are or CME will at some point encounter a coronal
null point). The behaviour of linear MHD waves (fast & slow magnetoacoustic waves
and Alfvén waves) has been investigated in the neighbourhood of a variety of 2D null
points (e.g. McLaughlin & Hoo®004 2005 20063 b; McLaughlin et al. 2008.

These authors found that the (linear) Alfvén wave propagates along magnetic eld
lines and accumulates along the separatrices in 2D, or along the spine or fan-plane
in 3D. Thus, these authors make a key predicte@paratrices, spines and/or fan-
planes will be locations for preferential heating by (linear) Alfvén waves

Waves in the neighbourhood of a single 2D null point have also been investigated
using cylindrical models, in which the generated waves encircled the null point (e.qg.
Bulanov & Syrovatskiil98Q Craig & McClymont 1991, 1993 Craig & Watson
1992 Hassanl992 and it was found that the wave propagation leads to an exponen-
tially large increase in the current density (see also Ofetaad. 1993 Steinolfson
et al. 1995 and a comprehensive review by McLaughéh al. 2011afor further
details). Nonlinear and three-dimensional MHD wave activity about coronal null
points have also been investigated (e.g. Galsgagaad. 2003 Pontin & Galsgaard
2007 Pontinet al. 2007 McLaughlinet al. 2008 2009 Galsgaarckt al. 20113 b;
Thurgood & McLaughlin2012 2013.

One of the most ef cient damping mechanisms of Alfvén waves to date is called
phase mixingand is described by Heyvaerts & Prie&B83 for a harmonic wave
train propagating in an uniform vertical magnetic eld. They found that the ampli-
tudes decay as the negative exponential depends on the third power of the height and
linearly with magnetic resistivity, . Thus, the damping length depends oh" 3,

Since observations rarely show more than a few periods at a time, ét@q2002
investigated the propagation of single pulses and found that the decay was now
algebraic in nature but still dependent ont 2.

The phase mixing mechanism is simple to explain: when the plasma has a den-
sity gradient perpendicular to the magnetic eld, the Alfvén speed is a function of
the transverse coordinate. Thus, the Alfvén waves propagate on each eld line with
their own local Alfvén speed. After a certain time, the Alfvén wave perturbations on
neighbouring eld lines become out of phase (e.g. Bathal. 2000 McLaughlin
et al.20111. It is precisely the Alfvén perturbations oscillating independently from
their neighbours that leads to the build-up of small length scales and consequently
current generation and hence dissipation.

In this paper, we will investigate the behaviour of the linear Alfvén wave in
the neighbourhood of a simple 2D X-point geometry, and we shall consider the
behaviour in both uniform and non-uniform density plasma. This lifts one of the
key restrictions imposed by McLaughlin & Hood@04 and its subsequent papers,
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namely the assumption of constant equilibrium density. With a non-uniform density
pro le, the Alfvén speed is now changing from eld line to eld line, and thus we
may have phase mixing. This is the key question that this paper addresses: with the
addition of a non-uniform density, does the current build-up still occur at the sep-
aratrix or does phase mixing now allow the energy to be extracted from a different
location?

Our paper has the following outline: the basic setup, equations and assumptions
are described in sectio®, the numerical and analytical results are presented in
section3, and the conclusions are given in sectibn

2. Basic equations

The MHD equations for a low- plasma appropriate to the solar corona are used.
Hence,

1wV = S (x B,
_I?: x (vx B)+ 2B,
— 4+ (\/): O, . B:O, (1)

t

where is the mass density,is the plasma velocityg the magnetic induction (usu-
ally called the magnetic eld)p = 4 x 10°’ Hm®! the magnetic permeability,

= Uu is the magnetic diffusivitym? s>1), and the electrical conductiv-
ity. The gas pressure and the adiabatic energy equation are neglected in the low-
approximation. We have also neglected viscous terms in equalfiprisvestigations
involving viscous magneto uids can be found in Kumar & Bhattachang@l() and
McLaughlinet al. (2011H and references therein.

Figure 1. Equilibrium magnetic eld.



J. A. McLaughlin

The equilibrium magnetic eld structure is taken as a simple 2D X-type neutral
point:

X v Z
Bo = Bo E’O’SE , (2

where By is a characteristic eld strength and is the length scale for magnetic
eld variations. This magnetic eld can be seen in Fiy.Note that this particular
choice of magnetic eld is only valid in the neighbourhood of the null point located
atx = z= 0. In addition, equatior?) is potential, although in general coronal elds
are twisted and thus a potential eld is a coarse approximation.

We can also writdBg = x A, whereA = (0, A, 0) is the vector potential. For
our particular choice of equilibrium magnetic eldy = S xz

2.1 Linearized equations

To study the nature of wave propagation near null points, the linearized MHD equa-
tions are used. Using subscripts of O for equilibrium quantities and 1 for perturbed
guantities, the linearized versions of equatioh)safe

V1 1
— = —( x Bj1)x By,
oBt H( 1) X Bo
—tl = x (vix Bg)+ 2By,
~I+ . (o) =0 -Bi=0 (3)

t

We will not discuss the linearized continuity equation further as it can be solved once
we knowv;. In fact, it has no in uence on the momentum equation (in the low
approximation) and so in effect the plasma is arbitrarily compressible (e.g. Craig &
Watson1992).

We now consider a change of scale to non-dimensionalize;let wv,, Bg =
BoBg, B1 = BoB;, x = Lx ,z= Lz, = % andt= tt, where we let*
denote a dimensionless quantity andBy, L andt are constants with the dimensions
of the variable they are scaling. We then 8gt [T o = vV andv = a/t (this sets
v as the background Alfvén speed). This process non-dimensionalizes equations (
and under these scalings, = 1 (for example) refersto = t = L/V; i.e. the
(background) Alfvén time taken to travel a distariceFor the rest of this paper, we
drop the star indices; the fact that they are now non-dimensionalized is understood.

We now restrict our attention to 2.5D MHD, i.e. 3D MHD with an invariant direc-
tion, and here we arbitrarily také y = 0. In addition, from now on we consider
an ideal plasma (i.e. let = 0 or Ry, ) but will discuss the role of resistiv-
ity further in the conclusions. Numerical diffusion, although present in all numerical
simulations, plays a negligible role. The linearized MHD equati@)sn@turally
decouple into two sets of equations, with one set governing the behaviour in the
invariant direction (i.e. here thedirection) and the other governing behaviour in the
xz-plane only. Furthermore, McLaughlin & Hoo8@04 showed that the behaviour
in the invariant direction corresponded to Alfvén wave behaviour, and that the equa-
tions in thexz-plane governed the fast MHD wave behaviour (note the slow MHD
wave is absent in the low-limit).
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In this paper, we focus on the linearized equations for the Alfvén wave wyith
(vx,Vy,Vz) andBy = (by, by, b;). For details of the fast wave equations, see the
review by McLaughliret al. (20113.

The equations governing the behaviour in the invariant direction (i.e.ythe
direction) are

Vy _ _
0—t = (Bo: )by = Bx—X"' Bz—Z by,
b 1
_ty = (BO )Vy"'a 2by
1 2 2
T BB WIR, et 2 @

wherevy is the velocity out of the plane th&o de nes. Hence, waves with this
velocity will be transversevaves (energy ow perpendicular to the wavevector).

We will now vary the background plasma density. A straightforward way to add a
non-uniform density pro le to the governing equations is to consider o(Ao),
whereA = (0, Ao, 0) is the component vector potential alg is its y-component.
Thus, since Ag is perpendicular t@o, we have a density gradient perpendicular to
the magnetic eld. Under this modelg is now constanélonga eld line but it can
vary across eld lines, i.e. vary from eld line to eld line. Hence, the equilibrium
density is purely a function ofg, namely

0= o(Ao) = o(x2, )

whereAq = S xz(recall that at this point all our variables are non-dimensionalized).
Thus equations4) can be combined and written as

2 2
Vy 1 5 1
= Bo: )°vy= —— By—+ B,— v
t2 o(xz)( 0 )7V olx2) X 2z Y
1 3 2
= X—SzZ— Vy, 6
o(x2) X z Y ©)
where we have taken = 0 and have implemented our choice Bf from
equation p).

This is the primary equation we will be utilizing in this paper to investigate
the behaviour of the Alfvén wave. In its derivation, we have assumed linearized
behaviour in an ideal 2.5D plasma, i.e. a 3D plasma with an invariant direction.

If we now de neVao(x2) = I/ o(x2) then equation®) can be written as

2 5 2
sz = Vao(x2)? x—8z— vy= Vao(x2?(Bo - )?vy )
HereVao(x2) is related to the equilibrium (Alfvén) speed of the system. It is pre-
cisely this non-constant Alfvén speed, iMag = Vao (X2), that leads to gradients
in the Alfvén-speed pro le, and hence to the possibility of phase mixing. Note that
o was assumed to be constant (Mg, = 1) in the models of McLaughlin & Hood
(2004 2005 and there was no possibility of phase mixing, i.e. we have now removed
a key assumption of these previous models.
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2.2 Method of characteristics and D’Alembert solution

Equation ) can be solved using the method of characteristics.ad&et Bo: =
X~ S z—, wheres is a parameter along a characteristic, and compare with, e.g.,
% — dx Vy dz Vy

® = & x T & > Comparing like terms yields

X = X0, 7= 2065, (8)
vyhere Xo and zg are the starting positions of our characteristics. Thaisz
Slog % = log XLO and equation?) can be written as

2 2 2
j = ;d_vy = Vgod_vy_
t2 o(X2) ds? ds?

This characteristic equation can be solved with a D’Alembert solution such that

(9)

vy = F[tS Tos]+ G[t+ o9

= F tS S

—_ Gt
Vao(Ao) * *

S
Vao(Ao)
(10)

whereF andG are functions prescribed by the initial/boundary conditions. Note
here that we can only implement the D’Alembert solution sidgeis a constant
along each eld line (characteristic).

2.3 Equilibrium density pro les

In this paper, we are investigating the effect of including a non-uniform background
density pro le, and we present results from four scenarios. The rst three cases will
consider a density pro le of the formp = 1+ (x2)?, where we vary the parame-
ter . Firstly, we will consider a uniform density pro le (where= 0). This system

is identical to that investigated in McLaughlin & Hoo@Q04), and provides an

(Scenario 1) (Scenario 2) (Scenario 3) (Scenario 4)

S
o=
o O%
o
oS

Figure 2. Scenario 1shows density pro le of Scenario 1, i.eg = 1 (uniform density).
Scenario 2shows density pro le of Scenario 2, i.eg = 1+ 3(x2)? (weakly non-uniform
density). Scenario 3shows density pro le of Scenario 3, i.eg = 1+ 30(x2)? (strongly
non-uniform density, note change raxis). Scenario 4shows density pro le of Scenario 4,

ie. o=[1+ 30(xz)2]81. Since 0< o 1in Scenario 4, this sub gure is presented as a
surface ofS o, as this shows the pro le behaviour more clearly.
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excellent visual comparison to the other scenarios. Secondly, we consider a weakly
changing density pro le of the formg = 1+ 3(x2)? ( = 3) and thirdly, we
consider a more extreme density pro le of the form= 1+ 30(x2)? ( = 30).
The second and third choices of density pro le consider a region of highgst.e.
smallest ¢ close to_the null pointWe will also consider a fourth scenario where

o = [1+ 30(x2)?]°1, where the maximunVao now occursaway from the null
point. Tests show that these four choices of density pro le communicate all the gen-
eral results well. These four density pro les can be seen inZE({gote the axes vary
between sub gures).

3. Numerical simulations and analytical solutions

In this section, we solve equation$) lumerically using a two-step Lax—Wendroff
scheme and we present results from four non-uniform density scenarios. We drive
our system with a wave pulse along the entire upper boundary, and we present a
computational domain (0 x 2,0 z 2)with a single wave pulse coming in
across the top boundary € 2). The boundary conditions were set such that

vy(x,20)=sin( 1), for o X 2
vy = 0, otherwise
\ \% \
- =0y, Y =, Y=o (11)
X x=2 X x=0 Z 70

Results presented in this paper have a typical numerical resolution 0 <2@000

and (successful) convergence tests were performed. As detailed in s2&idime
governing Alfvén wave equations can also be solved analytically (i.e. using equation
(10)). In order to compare the analytical and numerical results, we must substitute
the same initial conditions into the D’Alembert solution, Fe.(t) = sin( t) to get

the analytical solution fovy, namely:

. —_ z
vy(x,z,t)=sin  t+  o(x2) Iogz— ,
0

0 t+ o(xz)logz—z0 -

for 0 x 2

(12)

It should also be noted that the agreement between all the numerical and analytical
work in this paper is excellent.
We can also use our D’Alembert solution to calculaggand hencegy and j,. For

the rstthree scenarios;p = 1+ (x2)?, and so using equatio?) we can write

. . 5 5 z
by =S 1+ x2zZ2sin t+ 1+ X222|ng— , (13)
0

1+ x272
z

. z — Z
ix + x%zlog— cos t+ 1+ x272log—
Z9 29
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2

Xz . 5 5 z
+ ————SIn t+ 1+ x272 |Og — y (14)
1+ x%72 Zo
, < X7 _ —— Z
jz = S —————=5In t+ 1+ Xzzzlog—
1+ %222 Zo
~ z &5 5 V4
§ log — xZcos t+ 1+ x2Z2log— . (15)
2 2

Note that the analytical solution fdsy, jx and j; is slightly different for o =
1/[1+ 30(x2)?.

3.1 Scenariol: Uniform density( = 0)

The rst three scenarios will consider a density pro le of the formi= 1+  (x2)?,
where we vary the parameter Firstly, we will consider a uniform density pro le
(where = 0). The resultant wave evolution can be seen in Big.

We nd that the linear Alfvén wave propagates downwards from the top bound-
ary and begins to spread out, following the eld lines. As the wave approaches the
x-axis (the separatrix), it thins but keeps its original amplitude. The wave eventu-
ally accumulates very near the separatrix. Note that these results are similar to those
investigated in McLaughlin & Hood2004), and are presented here to provide a
visual comparison and contrast to the other scenarios (McLaughlin & 12664
actually used a different driver, making direct comparisons with scenarios 2, 3 and 4
less obvious).

We can also solve equatiof)(using our D’'Alembert solution. Here, equations
(13)—(15) can be simpli ed under = 0 to give

o z z
bp=Ssin t+log— , jy= —cos t+log— , j;=0.
% 920 Ix 5 920 Iz

Hence, the Alfvén wave causes current density to build up along the separatrix.
Furthermore, since = zge>S from equation §), we see that thig, build up isexpo-
nentialin time (due to the /iz dependence) wheregg = 0 for all time. Figure4
shows the build-up ofx.

3.2 Scenario2: Weakly non-uniform density = 3)

We now consider a weakly non-uniform density pro lgj(x, z2) = 1+ 3x2Z2. As
in Scenario 1 in sectioB.1, equations4) are solved numerically using our two-step
Lax—Wendroff scheme, utilizing the same boundary and initial conditions (equations
(12)) but now implementing our weakly-changing density pro le, i.e. the governing
Alfvén wave equation is now

2Vy _ 1 2

= x—Sz— .
t2 1+ 3x2z2 X z Y

The results fowy can be seen in Fig. We see that the Alfvén wave again descends
from the upper boundaryx(= 2) and accumulates along the separatr»akis),
but now the (initially planar) wave is distorted; a phenomenon not seen in previous
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Figure 3. Contours ofvy for an Alfvén wave sent in from upper boundary for x 2 and
its resultant propagation at timeg) ¢ = 0.25, )t = 0.6, )t = 1.0,d)t= 1.4,(et = 1.8,
fHt=22,0t=26,)t=30,()t=34,()t=38 K t=42and)t= 4.6.

null point studies. The varying speedyo(x2), means different uid elements of the
wave travel at different speeds. Thus, the uid elements of the wave closest to the
x = 0 axis, wheréVpp(x2) takes its maximum value (or alternatively(xz) takes

its minimum value) propagate at a greater speed than those uid elements away from
the axis (i.e. left-hand side propagates faster than the right-hand side). Thus, the wave
is distorted and descends at different rates. This is clearly a signi cantly different
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Figure 5. Contours ofvy for an Alfvén wave sent in from upper boundary for Ox ~ 2 and
its resultanpropagation at timesf t = 0.25, o)t = 0.6, )t = 1.0,d)t = 1.4,(et = 1.8,
Ht=22,0t=26,h)t=30,t=34,(t=38 K t=42and()t= 4.6.

wave behaviour to that of the uniform density case considered in3Fithe wave
does however still eventually accumulate along the separatrix.

Again, the D’Alembert solution agrees exactly with the numerical simulation.
Substituting = 3 into equations¥4) and (L5) gives analytical forms fojx and j.
These can be seen in Figutgand7, respectively. In Fig6, we can see that there
is a large concentration gk initially along the wave, due to the changing density
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pro le. This concentration pppagates with the wave and begins to accumulate along
the separatrixx-axis). The build-up ofix along the separatrix is substantially more
than in early sub gures. In FigZ, we can see that there is initially a concentration
of j; (due to the changing density pro le) but that this decays away as time elapses.
Hence the separatrix is still the location for preferential heating due to Alfvén waves,
even with the inclusion of a (weakly) non-uniform density pro le.

3.3 Scenario3: Strongly non-uniform densify = 30)

We now consider a strongly non-uniform density pro le(x, z) = 1+ 30x2z2. As

in Scenarios 1 and 2 above, equatiofsdre solved numerically using a two-step
Lax—Wendroff scheme, utilizing the same boundary and initial conditions (equations
(12) but now implementing our strongly-changing density pro le, i.e. the governing
Alfvén wave equation is now

2 2
vy - ! x—Sz—
t2 1+ 30x2z2 X z

Vy.

The resultant propagation ®f can be seen in Fig. The Alfvén wave behaviour

is similar to that seen for the weakly-changing density pro le (sec8@, but with

one important distinction. Again, we see that the Alfvén wave descends and accu-
mulates along the separatrix. The wave is distorted from its original planar form by
the varying density pro le, and hence different parts of the wave descend at different
speeds. Thus, the wave travels faster nearer te-thés than away from it. However,
since the Alfvén wave is con ned to the eld lines, and propagating along those eld
lines, there comes a point where uid elements of the wave are so ahead of other
elements of the wave that the wavefront (made by joining up all the elements at the
sames value) actually bends back upon itself; again a phenomenon not seen before
in null point investigations. This can be seen most clearly in the lower sub gures of
Fig. 8. Despite this however, once again the Alfvén wave still eventually accumulates
along the separatrixaxis).

Since the wave is so stretched where it forms the ‘re ection point’ in the wave-
front, there may be a great deal of current build-up near this point. Hence, this may
provide an additional location for (preferential) heating, and so we investigate the
resultantsjx and j;.

As before, the D’Alembert solution agrees exactly with the numerical simulation.
Substituting = 30 into equationsid) and (L5) gives analytical forms fojx and j,
and these can be seen in Figuéesnd10. In Fig. 9, we can see that there is indeed
a very large concentration (note value on axis!)jgfinitially along the wave, due
to the changing density pro le. This current concentration propagates co-spatially
with the wave and begins to accumulate along the separat@xi€). This build-
up along the separatrix eventually overtakes the magnitude of current concentrations
elsewhere (although this occurs at a later time than that shown in the last sub gure).
Hence, the separatrix wifltill be the location for the majority of heating, however
small is taken to be. Of course, if is taken to be extremely large (unphysical)
then there may be some heating along other parts of the Alfvén wave. However, the
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Figure 8. Contours ofvy for an Alfvén wave sent in from upper boundary for x 2 and
its resultanpropagation at timesf t = 0.25, o)t = 0.6, )t = 1.0,d)t = 1.4,(et = 1.8,
Ht=22,0t=26,h)t=30,t=34,(t=38 K t=42and()t= 4.6.

density pro le invoked in this scenario has a very extreme distribution and so per-
haps under coronal conditions this scenario would not take place and, consequently,
preferential heating woulstill occur along the separatrices

In Fig. 10, we can see that there is initially a concentrationgdue to the chang-
ing density pro le). This propagates in the increasingnd decreasingdirections,
and decays away near tleaxis. The rest of thg, concentration propagates away
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and out of our box, but will eventually decay away (likedid before). This can be
see in the form ofj; from equations15).

Itis perhaps not clear fromigures9 and10alone that the maximum current build-
up (still) occurs at thex-axis (z = 0 line). To show this analytically, we can utilize
equations 14) and (L5) in combination with equations). Thus, we can substitute
X = Xo€%, 2= 70e>S and hencexz = Xozg to give

2

. . X , .
jx = € ZOS( x3z0)s cos(tS  Tos)+ ‘iosm(ts 09)
= &[(BSCs)cos(tS “os)+ Dsin (tS "o9)]
3 2
- Ss s X% s — 2 s —
jz = €° S——sin(tS os)+ ( Xozgscos(tS os)
0
= SS[SEsin (tS o9)+ Fscos(tS 09)], (16)
wherexg, 20, , , o0, B,C, D, E andF are all constants for a specic eld line

(B,...,F are just collected constants but are all strictly positive).

Figurel1l shows a surface of the build-up ¢f plotted against and time, along
x = 0.5. Here, we can see thatdecreases from = 2 down to neaz = 0 as time
elapses and thay is building up the closer we are to= 0 and the build-up is
increasing in time. Hence, we can see now clearly see that the behaviguanod
jz follow complicated forms that depend upon many starting parameters agd on
but that at large timesjx will eventually build-up exponentially angl, will decay
exponentially. Thus, for the linear Alfvén wave, preferential heating will still occur
along the separatrices, despite the inclusion of either weakly or strongly non-uniform
density pro les.

400

i

Figure 11. Shaded surfaces showing the build-up jgf plotted againstz and time with
x = 0.5.
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3.4 Scenariod: Non-uniform densityo = [ 1+ 3O(xz)2]Sl

We now consider our nal non-uniform density pro lep = [ 1+ 30(x2)?]°L. As
before, equationslj are solved numericallysing a two-step Lax—Wendroff scheme,
with the same boundary and initial conditions (given by equatidi¥) (but now
implementing our fourth non-uniform density pro le. Thus, the governing Alfvén
wave equation is now

- 1+ 3002 S1
v ( z°) X < z - Vy.

The results fowy can be seen in Fid.2. Here, the greatest magnitude\gfo occurs
away from the axes (in these numerical boxes the maximum occursat = 2).
Thus, we nd that the Alfvén wave is again distorted from its initially planar shape,
but that it now travels faster tHerther we are away from the null poihéixes. The
rst sub gure of Fig. 12 shows the massive speed differential across the wave after a
very short time. The linear Alfvén wave then descends and starts to accumulate along
the x-axis (separatrix). Here, the wave slows down and thins, but keeps its original
amplitude. There is no spikee ection point formed, as there was in secti8r8,
This is clearly a different velocity pro le to that seen in the previous three gures
(i.e. Figures3, 5 and9) but the phenomenon of different uid elements propagating
at different speeds due to the non-uniform density pro le is common to all scenarios.

As before, the D’Alembert solution agrees exactly with the numerical simulation,
and we can use our D’Alembert solution to work dyt jx and j; (as we did in
equations 13)—(15)) for this fourth density pro le. The resultant behaviour fr
and j; can be seen in Figd3and14. In Fig. 13, we can see that there is initially a
large concentration offy due to the extreme density pro le, but that this then decays
away (as the wave propagates along the eld lines and out of the box). At a later time,
after the wave is near the separatijx,starts to grow again. In Fid.4, we can see
that there is initially a large concentration pf(due to the changing density pro le),
but that it very quickly decays away. Thus, there is a large current accumulation along
the separatrix and our key result about preferential Alfvén wave heating again holds.

As mentioned above, our D’Alembert solution gives us general formbfoyx
and j,. Substituting o = [1+ (x2)?]°! into these forms (where = 30 in this
study case but is used so the result is more general) and substitwting Xozp
andx = xpe®, z= zpe>S gives

. s 3 . .
jx = € X373 os+% cos(tS T08)S ¢ x3zosin (tS o9

= &[(Bs+ C)cos(tS “0s)SDsin (tS To9)]
« o o . 3 . .
jz = €% 8s xoz5 fcos(tS Tos)+ xozg Ssin (S Tos)
= SS[Esin (tS Tos)+ Fscos(tS g9,

where agairxg, zo, , , o, B, C, D, E and F are all constants for a specic
eldline (B,...,F are just collected constants but are all strictly positive). Note that
these equations have a similar form to equatid® put the constant8—F are
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Figure 12. Contours ofvy for an Alfvén wave sentin from upper boundary forOx 2 and
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different. Hence, we can see that the behaviouijywofnd j, follow complicated
forms that depend upon many starting parameters argj but that (as before)y

will eventually build-up exponentially anf} will decay exponentially. Thus, for the
linear Alfvén wave, preferential heating will still occur along the separatrices, even
when a non-uniform density pro le is considered.
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4. Conclusion

We have invetigated the behaviour of the linear Alfvén wave in the neighbourhood
of a 2 D X-point geometry, investigating both uniform and non-uniform equilibrium
density plasma. Speci cally, we have considered four scenarios:

€ Uniform density: ¢ = constant.

€ Weakly non-uniform density:o = 1+ 3x2Z2.
€ Strongly non-uniform density:o = 1+ 30x?Z2.
€ Non-uniform density: o = [ 1+ 30(x2)?]5L.

We nd that the linear Alfvén wave propagates along the equilibrium eld lines
and a single wave- uid element is con ned to the eld line that it starts on. Since the
wave strictly follows the eld lines, it spreads out as it approaches the diverging null
point. When a uniform plasma density is considered, it was seen that the (initially
planar) Alfvén wave front remains purely planar, despite the varying equilibrium
Alfvén-speed pro le, and that the current density accumulatgsonentiallyat the
separatrices. In the non-ideal case, these Alfvénic disturbances will dissipate their
(wave) energy at these preferential locations.

We also investigated a variety of non-uniform equilibrium density pro les, and
found that in these scenarios the (initially planar) wave front is now rapidly stretched
and distorted. In fact, the wavefront is distorted from its initially planar shape and
travels along the eld lines at different speeds. Depending upon the exact form of
the density pro le, the wavefront can stretch so much that it bends back upon itself
and creates a spike or ‘re ection point’ — an effect not reported before in the case of
wave behaviour around null points. However, in some cases, the creation of such a
re ection point can require an extreme and unphysical density pro le.

This paper set out to answer a key question: with the addition of a non-uniform
density, and thus removing one of the key restrictions of McLaughlin & H2004
and subsequent papers, does the current density accumulation still occur prefer-
entially at the separatrix or does phase mixing now allow the wave energy to be
extracted from a different location? At its heart, the results in this paper have been all
about the battle betweatissipation due to phase mixiragddissipation of the cur-
rent build-up along the separatriceBrom our results above, we conclude that the
current density build-up is limited except near the separatrices. Thus, our key result
is that for the linear Alfvén wave preferential heating occurs along the separatrices,
even when a non-uniform density pro le is considered

The energy carried by Alfvén waves is considered to play an important role in the
heating of coronal holes and the acceleration of the solar wind (e.g. Ofman & Davila
1995 1997 Chmielewskiet al. 2013 and references therein). Our results highlight
that the separatrices will be preferential locations for Alfvén wave heating and thus
present a clear observational prediction.

Finally, this investigation has utilized linearized MHD equations (se@idnhand
this approach is only valid when the perturbations in our physical parameters are
much smaller than their equilibrium values. In addition, the Alfvén wave is slowing
down as it approaches the separatrices, hence its gradients are increasing, and more-
over these have been shown to grow exponentially (see se8tihi3s2, 3.3and3.4).

Thus, in a simple manner, our linearization will start to break down on time scales

t S logMa, whereMa is the initial Alfvén Mach number. Thus, our results are
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valid for small-to-medium amplitude Alfvén waves, but further studies are required
to fully understand the implications for lg& amplitude non-linear Alfvén waves.
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