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Figure 1: Two examples of reconstruction: (a) 2D images, (b) ground truth 3D point cloud, and (c) reconstructed 3D point cloud.

ABSTRACT
We propose a novel end-to-end deep learning framework, capable
of 3D human shape reconstruction from a 2D image without the
need of a 3D prior parametric model. We employ a “prior-less”
representation of the human shape using unordered point clouds.
Due to the lack of prior information, comparing the generated and
ground truth point clouds to evaluate the reconstruction error is
challenging. We solve this problem by proposing an Earth Mover’s
Distance (EMD) function to find the optimal mapping between
point clouds. Our experimental results show that we are able to
obtain a visually accurate estimation of the 3D human shape from a
single 2D image, with some inaccuracy for heavily occluded parts.
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1 INTRODUCTION
In this paper, we tackle the problem of 2D to 3D reconstruction.
Previous work in this field typically makes use of strong prior
knowledge of plausible 3D human shapes [1, 3, 7]. However, due to
the complex geometry of the human body, and the large variety in
human body size, using only a parametric model cannot precisely
recover all of the details relating to human body shape.

We propose that the shape can be represented by directly gener-
ating a "prior-less" unordered point cloud. In order to facilitate the
use of an unordered point cloud, we need to be able to measure the
distance between the reconstructed points and the ground truths.
Motivated by [2, 5], we propose a novel loss function that incorpo-
rates the Earth Mover’s Distance (EMD). This method determines
the optimal alignment between two point cloud distributions, and
allows for evaluation of the reconstruction accuracy.

In this paper, we therefore present the following contributions:
• An end-to-end deep learning framework for 3D human shape
reconstruction from a 2D image without the need for a 3D
prior parametric model.

• A novel loss function based upon EMD [5] to evaluate the
distances between unordered 3D point clouds representing
human body shapes.

• A synthetic pairwise 2D and 3D dataset to train our deep
learning framework inspired by [6].
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2 THE RECONSTRUCTION NETWORK
We propose a deep architecture that has strong representation
ability and makes use of the statistics learned from the associated
geometric data. Given an input image S and a random vector t , the
network reconstructs a 3D point cloudMr through a CNN encoder
and a fully-connected regressor.

To model the uncertainty of the input image, we propose the
incorporation of a random perturbation vector t as a part of the
input, together with the input image S [4]. The core of the network
consists of a CNN encoder and a fully-connected regressor. The
encoder is able to understand the features of images, while the
regressor can capture complex structures to generate the corre-
sponding 3D point cloud. As we do not enforce prior knowledge,
we use an unordered point cloud setM = (xi ,yi , zi )

N
i=1 to represent

the 3D shapes, where N is a predefined constant that represents
the number of points in the point cloud.

We define the ground truth as a probability distribution P(·|S)
over the shapes conditioned on the input 2D image S to model the
uncertainty from 2D to 3D. We train a deep neural network G as a
conditional sampler from P(·|S):

M = G(S, t ;θ ), (1)

where θ denotes the network parameter, and t ∼ N (0, I ) is the afore-
mentioned random vector used to perturb the input. During testing,
multiple samples of t are used to generate different predictions.

The encoder is composed of a combination of ReLU and convo-
lution layers. It maps a random vector t and the input image S into
a subspace. By using MoN (min of N) to model the uncertainty, the
network can change its prediction based upon different random
vectors. The regressor generates the 3D shape as an N × 3 matrix,
where each row represents the coordinates of one vertex.

3 THE EMD-BASED LOSS FUNCTION
While the use of an unordered point cloud frees the system from
relying upon any priors, it is challenging to compare two unordered
point clouds due to the lack of correspondence. Such a comparison is
required when we build the reconstruction loss function. Motivated
by [2, 5], we propose the use of EMD in our deep learning loss.
EMD evaluates the minimum overall distance between two point
clouds by finding the optimal mapping between them. It optimizes
a set of unidirectional flows to map the points.

The loss function is defined as:

L(Mr ,Mдt ) = dEMD (Mr ,Mдt ), (2)

whereMr is the reconstructed 3D human shape,Mдt is the ground
truth of each sample, dEMD is the EMD calculated as:

dEMD (M1,M2) = min
ϕ :M1→M2

∑
x ∈M1,y∈M2

| |y − ϕ(x)| |2, (3)

whereM1,M2 ∈ R3 has equal size,m = |M1| = |M2| and ϕ : M1 →
M2 is a bijection (i.e. flows), | | | |2 represents the root mean square
point to point distance.

With the EMD-based loss function, the system can effectively
evaluate the distance between the synthesized human shape and
the ground-truth one for backpropagation during training.

Figure 2: Different possible shapes for the same image.

4 PRELIMINARY EXPERIMENTAL RESULTS
Fig.1 shows the point cloud reconstructed by our system compared
with the ground truth. Both examples show that our reconstructed
point cloud resembles the body shape with the correct posture.

Fig. 2 shows that, due to the inclusion of a random vector, the
same input image can have multiple plausible 3D shapes. Whilst
there are small variations, the depth information is generally con-
sistent and the overall posture provided is a good representation.

Our qualitative evaluations also suggest that the accuracy de-
creases as the amount of occlusion increases. We also observe that
the presence of occluded body parts may affect other body parts
which are not occluded. This is likely due to the EMD function
attempting to find the optimal mapping for the whole body.

5 CONCLUSION AND DISCUSSIONS
In this paper, we propose an EMD-informed CNN framework for 2D
to 3D point cloud reconstruction. Unlike the majority of previous
works, we experiment with a setup in which there is no prior-
knowledge. Our EMD function successfully solves the problem of
using an unordered point cloud for prior-less human shape repre-
sentation. Furthermore, to enable sufficient high-quality training
data, we employ a computer graphics pipeline to generate syn-
thetic training data. Our preliminary results suggest that the use
of EMD demonstrates high potential in matching two prior-less
point clouds in order to evaluate the reconstruction loss. However,
when multiple joints are close together or occluded, the system has
problems identifying which body parts the points should belong to,
which results in poor quality during occlusion.
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