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Abstract

Offshore wind power is one dhe fastesgrowing energy sources worldwide, which is environmentally friendly and
economically competitive. Shetérm time series wind speed forecasts are extremely significant for proper and efficient
offshore wind energy evaluation and in turn, benefind farm owner, grid operators as well as end customers. In this study, a
Seasonal AutdRegression Integrated Moving Average (SARIMAddelis proposed to predict hourlpeasured windpeeds
in the coastal/offshore area of Scotland. The used datasets consist of three wind speed time series collected at different
elevations from a coastal met mast, which was designed to serve for a demonstration offshore wind turbine. To verify
S AR Mpedosmance, the developed predictive model was further compared with the newly developedmiésgbased
algorithms of Gated Recurrent Unit (GRU) and Long Sherm Memory (LSTM). Regardless of the recent development of
computational power has triggel more advanced machine learning algorithms, the proposed SARIMA model has shown its
outperformance in the accuracy of forecasting future lags of offshore wind speeds along with timerse8as&kIMA model
provided the highest accuracy and robust heass among all the three tested predictive models based on corresponding

datasets and assessed forecasting horizons.

Keywords: Wind speedorecasting Seasonal Autdregression Integrated Moving Avera@ARIMA); Deep learningt.ong

ShortTerm Memory (LI M); Gated Recurrent Un{GRU).

Nomenclature:

Latin symbols

Q Output candidate of the cell state vector
Q Cell state vector for time step
Qo Cell state vector for time stép p
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@ Observation at timé

Q Update gate
[ Reset gate
@ Input of neuron at time st&p

Degree of seasonal differencing

0 Lag distance operator
0 Number of seasonal lag observations
0 Order of seasonal moving average
Y Assigned weights
@ Assigned weights
@ Bias
&) Intercept term
Q Number of times that raw observations are differenced
Q represents how many terms in the time series are taken back from the currént time
& Number of time steps
N Number of lag observations
n Size of moving average window
i Length of the seasonal period
(A Predicted wind speed tine stepd
(A Recorded wind speed tine stepod

Greek symbols

To Error term

n Differencing operator

€ SeasonafR parameters
g SeasonaMA parameters
1 Coefficient of lags

— Constant parameters



" Activation function

ABBREVIATION:
Adam Adaptive moment estimation
ANN Artificial Neural Network
AR Autoregression
ARIMA AutoRegressive Integrated Moving Average
ELM Extreme Learning Machine
EVS Explained Variance Score
GRNNs Gated Recurrent Neural Networks
KDE Kernel Density Estimation
KF Kalman Filter
LSSVM Least SquarS&upport Vector Machine
LSTM Long ShortTerm Memory
MA Moving Average
MAE Mean Absolute Error
MedAE Median Absolute Error
MSE Mean Squared Error
O&M Ooperation & Mmaintenance
R? R-square
RMSE Root Mean Square Error
RNNs Recurrent Neural Networks
RVFL Random Vector Functional Link
SARIMA Seasonal AutoRegressive Integrated Moving Average
SCADA SupervisoryControl And DataAcquisition
SVM Support \ector Machine

1. Introduction

To meet the decarbonisation aim in 2050, the offshore wind industry is expected to experience a considerable increase in
the coming several decadg§. On this account, a large amount of new offshore wind farms will be designed, installed and

monitored. The movements of offshore wind have the nature of randomness and are highly dependent on terrain and heights



[2]. Wind profile in the offshore sites are smoother and the loading of offshore tufBjireee often larger than the onshore
ones.Therefore, conventional methods designed for onshore wind speed prediction needdevmsaged for offshore wind
forecasting.

Wind speed prediction is not onlyucial for the design and installation tafrge wind farms but also essential for
maintaining reliability and safe operation of the power netWéfkMore specifically shortterm and extra sheterm wind
speed predictiof5] are becomingnore and morgopularthrough different prediction methaddowever, investigation of
offshore wind speed prediction remains undaresentedrig. 1 summarisedrecentinvestigations regarding wind speed
forecastingsince 2015wherethetermdions hor e 0 i siondireahinh@nd aar ¢ @acawhi bdFeasiof f 6|
situated at a certain distance frahe shore Besidesthe termfi n e a r ® I o rfi & ddensfiesathe @ata collected from
weather statiosor wind farms thatarein the coastal area arery close to the shorelinehdse wind speed dashare common
features as the offshore ormsdarec | assi fi ed i nt o .#Ascan bé setimf Fighlptheamajorityaf wiedg o r y

speed forecastingtudiesare onshoravith very few case studies focused on offshmreearshore areas.

Yi f publicati di
f:ar of publica 1ons-regar ing Onshore . Offshore
wind speed forecasting
2015 [6-10] 5 -
2016 [11-18] 8 -
2017 [19-25] 7 1
2018 [26-31] 5 1
2019 [4,32,33] 2 1
2020 [34-36] 3 1 = onshore = offshore

Fig. 17 Summary of wind speed forecasting studies at different locatioa®assince 2015note thatwind speedrecorded
from nearshoreandcoastal arewvereclassified intothédi o f f shor 0 category
Wind speed prediction can be categorized on the basis of time horizons, as presSkaibézl ifNote that, the forecasting
accuracy is decreasing with the growth of prediction horizbhe currentstudy will focus on the investigah of shortterm
offshore wind speed forecast, whose major applications cover economic load dispatch planning, reasonable decisions of load
and operational security afaintainingwind turbinesToday,evencountries with the most advancenewable energsectors
such as the UK and Germaraye still confrontingchallengein entirely dependingn renewablesourcesGrid operatorhave
to turnto traditionalpower stationsinderunappreciatedheteorological condition® escapdrom overloading gricsystens or

powerwasting which maycausesignificantfailures and noteworthyexpensesFor examplejn 2016 alonearound 454



million were taken fronGerman consumers to cover the costs of compensating utility firntarfmigsto their inputq37].
Usingavailable historicainet mastata to predicshorttermwind speedn advance o&ctualpowergeneratiorcould be oe
of thesolutiors [5].

Table 17 Wind speed forecasting based on predictiornzoms[38].

Time scales Time horizons
Very shortterm <8 hours
Shortterm U 24 hours
Long-term > 24 hours

In terms of analysis methods, wind speed predictionatszbe divided into persisten¢@hysicd, statistical and hybrid
approache$4]. Among these methodshe statistical method i®ften considered as the most suitable one for stesnh
forecasting27]. Based orthis approachmany reseahers have focused oafining the accuracy of wind speed forecasting.
For exampleKavasseriand SeetharamafB89] applied theractionatARIMA (Auto-Regressin Integrated Moving Aeragée
for predicting wind speed in both owlay and twedaytime horizons A case studyusing a750kW wind turbineas the target
proved the dvantageof the proposed model in terms of error reductiover a persistence modeSinghandMohapatrg4]
introduced a novel statisticaiodelthat outperformedhe individual ARIMA forecastingwhich wasfeaturedby combining
repeated wavelet transfommd ARIMA. Wanget al.[27] integratedhe extreme learning model with ARIMi& predict short
term wind speesl The predictive accuracwas proved throughcase studies using wind speed dateasuredrom three
different field sites Cadenas and Rivefd0] presentech hybrid modelo incorporaé ARIMA and ANN (artificial neural
network. The comparison results indicated that the developed combined model has higher accurawjividaal ones
Additionally, a novelARIMA -basedmethodwas proposed by Shukur and Ljgd] to improve the accuracy and handle the
uncertaities in wind speed forecastingd more sophisticatednodel was proposed by Wang and H4R], which coupked
ARIMA, Least Square $yport Vector MachindLSSVM), Support Vector Machin€SVM), andExtreme Learning Machine
(ELM). Case studiesdased ortwo wind farm datsetsfrom Ching showed that forecasted wind spsederemoreaccurate
andmorereliablecompared with th@redictedresultsby individual method. Eymenet al [43] introduceda study of sasonal
trend analysif relative humidityand wind speed time series aroumdam, wherethe pstdam relative humidity was
forecastedy ARIMA models

All abovementionedpredictivemodels are based onRAMA, which an only perform well on stationary time series
However time-serieslike offshorewind speed, have features of seasonality and tren@ihose features become ma@m@eminent
in offshore caseshis type of time seriesan be addressed Bgasomal-ARIMA (SARIMA), which has been widely applied

in several differenforecasting issueg-or instance Fang and Lahdelmpt4] developed é&SARIMA modelto predict heat
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demandn district heating systeslt claimed that thelesignednodelprovideda high accuracy faneat demanébrecasting.
Kushwaha and Pindoriyd5] presented 8ARIMA-RVFL (Random Vector Functional Linkhodelto predict very shotterm
solar PV power generation, where a relatively high accuracy was achitaedver in terms of windspeed forecasting, fewer
researches focused on developing a SARINESed modekven though offshore wind speed varies seasarfaliymple and
efficient SARIMA-based modelvas developed by Guet al. [46], where the proposed method has improved accuracy over
ARIMA -based methods for monthly wind speed prediction

Offshore wind speeds are stochastic and uncema@king accurate predictisa challenging task. However, offshore
wind speed time series follow a seasonal periodical distribution, unlike the data used in other sectors. Therefore, using the
SARIMA model for offshore wind speed prediction could offer better data consistengotntially saving computational
costs and enhancing forecasting accura€ies. &isting studies for shoiterm offshore wind speed prediction focus on using
SARIMA-based approachthis papermwill bridge aboveknowledge gaps by investigatirgiportterm offshore wind speed
forecastinghrough integrated SARIMA modelling

Besides, in recent years, machine learning approgéiigsuch asleeplearningbased.STM and GRU[48], have been
increasingly popular in wind energy forecasting. However, the conventional neural network method may cause overfitting in
the training process, which make the forecasted result unrealistic. Todhihisrpaper also evaluated the accuracy of LSTM
and GRU which are recently developedachine learning algorithmagainst th@proposedSARIMA-based predictive models
using data from a met mast that was designed for serving an offshoréudimek[49]. This was realized in several phases
defined by the adopted methodology, which involved visuaizffshore wind speed time series, identifying correlations,
tuning hyperparameters through grid search and evaluating residual Eneepplied methodology of this studgd the used

time series predictive algorithm processing flowclasummarisedn Fig. 2andFig. 3, respectively.
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The key contributions of thistudyto the current knowledggapsof offshore wind speed forecastiogn be summarized
as follows:

A Propose an integrated forecasting method for gieom offshore wind speed predictions

A Introduce the seasonal term to skerim offshore wind speed predictions throsglasonaARIMA model;

A Validate the reliability of the proposed seaseARIMA model with recently developed machine learning algorithms

of LSTM and GRU

The remainder of this paper is organized as foll&estion2 describel theusedoffshorewind speed time seriekmtabak,
including how the met masteasurementsererecorded Section3 depicted the methodologies behitim SARIMA. Then,
the SARIMA predictive model wadevelopedand validated fooffshoreshortterm wind speed forecasting saction4. The
predictive results obtained from the designed SARIMA model fgtber compared with GRU and LSTM neural networks
in section5. Section6 concludes thistudy by summarizing kefindings and contributions of this paper.

2. Time series data description

The used offshore wind speedSCADA (Supervisory Control And Data Acquisitiprdatabase was collecteddom
01.01.2018 ~ 31.12.2018/ a measuring tower, which was designed to serve for a 7 MW demonstration offshore wind turbine
situated irthecoastal area of Scotlafé0]. The met mast provided accuraféshorewi nd condi ti ons for t he
& maintenance (O&M)It consists ofl1 meteoplogical sensors installed at different heights, which can measure wind speeds
(recorded by anemometers), wind directions (recorded by weatheryairepjessure (recorded byatmmeters)and air
temperature (recorded blysrmometers). In this investigati, the extractetime-seriesdatabase contains thrbeistoricalwind
speeds under a sampling rate of 1 tthjch werecollected at the height & m, 67 m,and110m, respectively The wind
speed dataset was then resampled with a time interval ahdiwas further used in the proposaie forecastingnodek.

3. Methodology

SARIMA, which is a variation of ARIMAcan supportime-seriespredictionsof univariate data containing trends and
seasonalitylt could control the seasonalityof time seriedy including them as a feature in predictive madmidexplicitly
cater to a set of classic structures in shenn datasetsSARIMA is short forSeasonaRuto-Regressin Integrated Moving
Average that is aeasonagéxpressiorof Auto-Regres®n andMoving Average while inserting the concept nfegrationEach
of those components can be explicitly specifiedlSAKRIMA as an input number (feature), in whichckssicnotation of
SARIMA (),'Q 1) (0,0, 0)sis frequently applied. The input featuresipiQ i, 0, 0, 0, andi stand with integer values,
wherer is the number of lag observations invohiedhe SARIMA model; Qis the number of times that raw observations are
differenced, also named as the degree of differenqiigthe size of the moving average window, also called as the order of

moving averaged is the number of involved seasotad observationgOis the degree of seasonal differencitigs the order
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of seasonal moving average, and the subscripted lettieisobften used to represent the length of the seasonal period,
respectivelyln time-series datasets, seasonal patterns can be circularly observed after a certain number of periodical values.
For instance, the value bfcan be set as 12 for monthly observations because one year has 12 months; for hourly observations,
the value of is often defined by 24 as one day has 24 hdaorsummary, lie major components the SARIMA model are:
A Auto-Regression{AR) adopts the dependency between an olesewmalueand previous lagged obsex valuedor
predictions. In wind speed forecasting, it would be similar to expressing that it is likely to be wihéynéxt hour
if it has been windy in the past a few hoursan individual AR model, the observatior) at timedonly depends

on its lag, which can be expressed[a%]:
O 1o T o E T ® T O @ 7

whered 1 pfB IE; & is the observation at tintef is the coefficient of lags théihe model estimatefs; is the
error term;) is the lag distance operatéitepresents how many terms #wekedbackfrom the current tim@in the
investigatedime series.

A Moving Average (MA) uses correlations between an observation and the corresponding residual error from the moving
average model that was applied to lagged observations. This component offers the opportunity to set the error in the
model as a linear combination of residual errors observed at previous timdrsapindividual MA modeléd only

depends on thiagged forecast errors, which can be stated as:

w” = n (2)

w T — — E - p — T
whered 1 ph8 Rt ; —is the constant parameters that the model estimatissthe lag distance operatdf)
represents how many terms in the time series are takenfimmkthe current time®; the error term$ are the
inaccuracies of ARnodels of respective lags. For instarficeand are the errors from thellowing expressions:

O 1 ® ) E 1 & T (3)

® I o I @ E T o T (4)

A Integrated (1) differences raw observationsnaootherthe entire time series. In this study, it woulddoenparableo

expressinghat it is likely to be the same regime of winds in the next hour if the difference in wind regime in the last
a few hoursg very limited. Udler more complicated circumstances, the models of AR and MA can be combined and

theindividual ARIMA expression can be summarized as:



n n w n 7 (5)
p T0 p U ® p 07T w
Ifn  p 0Ois defined as thdifferencing opeator, theEq. (5)above carbe further simplified as:
I one —07 o (6)
whered | A@ ph p B FE; Ais the intercept term.
Extended fom Eq. (6) the genaal form of SARIMA expression can be stated as:
I 0e Dnnd —O0g 0F @ (7)
wheree and are seasonal and neeasonal ARarameters, respectively;and—are seasonandnon-seasonal
MA parametersrespectively) is differencing operators
4. SARIMA modelling
In this study, thestandardize@pproach oBox-Jenkinsmethodology[52] was followed whiledevelopingthe SARIMA
model| which usesiterative diagnostics tainearth ofimized hypeiparametersn time serieforecasting It consists of three
main steps
A Modelidertification: evaluate trends, seasonality, and autoregression in the targeted wind speed time series by statistical
analysig(see sectiod.1 and 4.2
A Parameter estimation: adjust hyperparameters to optimize the predictive(sesdséctiod.3);
A Model checking: identify residual errors from the modelling results to assess the temporal structure that cannot be captured
by the current moddkee sectiod.4).
4.1 Timeseries analysis
Analysis and visualizaton f t i me series data could offer valuable di .
of trend and seasonalityhe variations of wind speeds and its distributions over September 2018 ¢orle spanare plotted
in Fig. 4aandb, respectively. IrFig. 4a, time intervals are presented on thaxis with wind speed observations along the y
axis, where a baseline ofivd variations is observgdee the dashed line fig. 43. In Fig. 4b, the distribution of wind speed
observationss summarised through box plots, where the medians of values were capturedvbyigiea at the middle of

boxes and very few dots were ebged as outliers outside the extents of the current dataset.
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Fig. 47 Wind speediime seriesvisualization in line plot (a) and box plot (b)

4.2 Correlations

Time series forecasting is based on correlations between the current observatipre\aods observatian The
correlations within theisedwind speed dataset (September 2018) were explorEyisa andb, respectively. As presented
in Fig. 53, the relationship between each observation at diaved a lag of that observation at time p is displayed through
a lag plot.As can be seetthe point cluster along the diagonal line is increasing from the badfirto the topright, where a
strongcorrelation is displayed, indicating the current time series are predidtalfligy. 5b, the strength ofhe correlation is
quantified between wind speeds and their lagsatpcorrelationwhere correlation coefficients were calculafed each
observabn and their lag valuegwutocorrelation isone of theappracheghat cardisplaycorrelation coefficiergfor a variable
over successive time intervassoknown as serial correlatioihe correlation coefficients were values that range betwieen
and 1, where its sign represents a negative or a positive correlation, respeétivedak correlation igepresented if a
correlation coefficientrendsto be zero, whereas a value cles® -1 or 1 shows a strong correlatiofihe variations of
correlation coefficients over laggeshown in Fig. 5b, at which ceorelation values that are above or below the dotted lines are
considered as statistically significaBoth negative and positiveorrelations were observed in the current wind speed time
series, which captures the relationshipb$ervation with its past observations in the samelaapposite seasons. Besides,

the sinealike waves are a strong sign of seasonality.
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Fig. 57 Lag plot (a) and autocorrelation (b) of wind speed time series

4.3 Grid search

In this paper the SARIMA model wasdevelopedo forecasibffshorewind speeds ifiuture time stepswhich takeghe
index of timeseriesas arguments heonemonthhourly-measured offshongind speed time seriegeresplit into the training
dataset and the testindataset which were recorded at the height of 11@mSeptember 20181ore specifically, e first 29
days of offshore wind speed measuremen(31.09.2018 ~ 29.09.20)18vere used for training while the last 24 data
(30.09.2018)ere applied for testing.

Given thata predictivemodel caronly be fit proficiently on modessizedinput datagrid searchings a valuable approach
for hyperparameteoptimization In this study hyperparameterim the SARIMA model were finelytuned using grid search
which automate the process ddissessing predictionsy different combinations ahe sixparametersfn, Q 1, 0, 0, ando.
The periodicity of the time seridsis set as 2&eausehourly-recordedwvind speedvasusedin thisinvestigation An iterative
method to grid searcBARIMA hyperparameters/as developed for evaluating different setsiofiseasonal and seaablag
values(fy andd) in the range ob ~5, nonseasonal and seasodiference iteration§Qand©) in the range of0 ~5) and
nonseasonal and seasoredidual erroof lag valueqrj and0) in the range of0 ~5). Offshore wind speed forecasting was
carriedout in each iteratioandall predicted values were compareditet mast measurementsherea MeanSquarederror
(MSE) score wagecorded. The best hyperparametersi@f , Qm,f o ,0 ¢ ,Op ,0 o are adopted in the current
SARIMA modelwhile the lowest value d¥ISE of 1.4292was obtained.

4.4 Modelling results

In this study, he one stepwalk-forward validationwasapplied during th&SARIMA forecasting, where a further trained

model waditted for each rolling time intervals and tested on the next time step. Even though this process is computationally

expensive, it makes certain the healthiness oSHRIMA model fitting. The rolling predictedffshorewind speedsdreen
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solid lines) showed a great match withe recordd values from the met mast (bldashedines) in Fig. 6, whereboth curves

presented the same trend and are in the correct scale.
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Fig. 617 ComparisonbetweerSARIMA rolling predictions and met mast measurements.

Thedifferences between true and predicteffshorewind speedgresidual errorsare plotted against tiniatervalsin Fig.
73, indicating that most trends in time series have been captured asvamersarying around the value of z€see the baseline
of Fig. 7a). Thekernel density estimation (KDEndthe histogramof standardizedesiduas arefurther displayed irFig. 7b
along with a Norma(0,1) density ploaisthereferenceimplying theerrors are Gaussian distributed and are centred near zero.
In Fig. 7c, aquantilequantilescatterplowas presented betwetre sebf quantilesof measureaffshorewind speedsindthe
setof quantiles ofSARIMA forecasting It proved that both sets gluantiles are normally distributes aneaty straight line
was formed Note that, the red line was markedaaeference Besides, 1 the correlogramof Fig. 7d, the autocorrelation
revealed thathere ar@almostno left correlations between residuaased on theubplots inFig. 7, theSARIMA wind speed

predictionshave achieved a great agreement withrdterdedmet mast data arntiere isroughly noinformationremainedn

the residualshat can be used féurther forecasting
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5. Comparisons against deep-learning-based GRU and LSTM

In this paperdeeplearningbasedGated Recurrent Neural NetwarkGRNNS), in particular Long ShotTerm Memory
(LSTM) and Gated Recurrent Units (GRW)ereintroduced tacomparegheirtime series forecasting results with the cimem
the developedSARIMA model. Both LSTM and GRUhave the uniform goal of tracking lonterm dependencies while
alleviating the vanishing gradient problems that often happened in the training phase of vanilla Recurrent Neural Networks
(RNNs). LSTM was initially introducedby Hochreiter and Schmidhub§s3] in 1997 and i unit consistsof threegates
including a forget gate, an output gate, andnput gateln GRU, thepreliminary assembly of three gates cell from LSTM is
bonded into a cell composition with only two gatas ((pdate gatandareset gate)GRU was subsequently proposed based
on the LSTM and was regularly considetechavemore compactrad simplerstructuresAs LSTM and GRU share a similar
configuration, only the details of GRU ardgroducedin this sessiorbut boththe performances dtSTM and GRUwould be
evaluatechgainst the SARIMAbased predictive models
5.1 GRU (Gated Recurrent Uni}s

GRU was firstlyintroduced by Cho et gl54] in 2014 to address the vanishing gradient problem that was often suffered
from standard RNN$A typical layout of the GRU unitd presented ifrig. 8. In GRU, both the reset gate and the update gate
are employed to solve the vanishing gradient problenichware two vectors that can manigte info in networks/layers
flowing to the desired output. What makes the two gates speciat ihélyacan be trained to keep memories from long term,

without removing relevant information that is significant for fertipredictions. In the GRU neural networks, the individual
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hidden unit could be used to capture dependencies, determined by the activity frequency of the corresponding gating
mechanisms. The update gateperatedo resolvehow much information from préous time steps is required to be fed into

future steps while the reset gate can assistant the model to determine how much past information can b fijrgdttengh

this powerful design, GRU can take all the required info from the past and effectively reduce theheaaigshing gradient

problem.

Output

N
"

X¢ ’—|
hm U' m > a,

| \l/ a GRU Block
b

Fig. 871 Structure of a GRWlock
Theoperation for the two gatesuld be initializedfrom calculating the update gatefor time stepdthroughEq. @):
N, o0 YQ o ®
where Qis the update gate; is the activation functionp and™Y are the assigned weights;is the nput of neuron at
time step; "Q  is the cell state vector for time stép p; & refers to the corresponding bias.

When is input into a GRU unit, it will be multiplied by its corresponding weight The same happens® that
contains the info from the previous time step p, which will also bemultiplied by its correspating weight'Y . Then, both
items are added together with the applicatiothefactivation function, .

After that, the reset gate is calculatsdEq. ©):

i, o0 YO @ €)
wherei is the resegate , is theactivation functioncw and’Y are the assigned weights;is the hput of neurorat

time stepd; 'Q is the cell state vector for time stép p; & refers to the corresponding bias.
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The equations of thepalate Eqg. 8)) and the reseH(q. ©@)) gates are expressed in the same form. The major differences
come from the used weights and the usages of the corresponding gates. For the reset gate, it is used to select how mucl
information from the past can be forgotten.

Then, the calculateaset gate is used to introduce a new memory contéy.ii.0)

N, oo 12770 @ (10)
whereQ is the output candidate of the csfiite vector; is theactivation functionc and™Y are the assigned weights;
o is the hput of neurorat time ste; 1 is the resegate 'Q is the cell state vector for time stép p; & refers to the
corresponding bias.

In Eq. (L0), the Hadamard (elementwise) product is calculated betiéen and the reset gate, which isoperatedo
determinewhat information to eliminate from previous time steps. Afterwards, the activity functipnisfapplied tgproduce
the output cadidate of the cell state vectd®y.

Finally, the current cell state vectdf] is calculated to pass down the hold information to the next unit. To dbeso,
update gateX) is involved inEq. (11):

HO IO A(0) p G z27Q (11)
whereQ is the cell state vector for time stggQis the update gatéQ is the cell state vector for time stép p; Qs
the output candidate of the cell state vector

In Eq. (11), the elementwise multiplication is applied to bati& 'Q  andp & & "Q, respectively. The two items are
then summed to obtain the current cell statore(Q).

5.2 Model configuration

In this invesigation, both GRU and LSTM shared an identicidep learning configuratignvhich hasthreeinput layes
and one output layer.hE number of neurons the input layeswereset as B while a single neuromwas designed in the output
layer. Before entering into théeep learningnodel| input data were transformed into a matrix with three dimensiobatoh
input, andshape wherebatchis the number of independent observations in the time sanrg;is the sequence length of the
given obgrvation;shapes the number of features at the observatioretMore specificallyjn thecurrentdeep learning neural
networks the usedunivariate sequencevhich consists ohourly recorded offshore wind speed in one mownths converted
into multiple samplesEach sampleontainsonly onetime steghat is used toutput a singléuturestep Besides, agnivariate
time seriesareinvolved, the number ofeatureswasalso defined a4 for the only variable of wind speetWhen thedeep
learningneural network were compiled, the MSEvas specified as the loss function while Huaptive moment estimation

(Adam)is appliedas the optimization algorithnsimilar to othermachine learninghodels GRNN models can onlyork well
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whereaghe involvedtime serieslataareon the scale of certain rangdn this studyall inputs werescalal between 0 and 1
before feedingnto thedeep learnindayers Furthermorethe number of epochs wedetectedas50 in the currenpredictive
configuration In this paper, the type @RNN modek, number of hidden layeraeurons in each hidden layand number of
epochswvereadjustedusing manual searchroughassessingarious network configuration8esidesfollowing the previously
designedSARIMA model the GRIN deep learningieural networksvere also validated through thealk-forward rolling
prediction, indicating &ch time stepn offshorewind speedorecastingwill be rolled at a time After the GRIN predictive
modeldevelopeda predictionfor onetime step, the actuakcordedoffshorewind speedwill be grasped and further used in
predictionsfor the next time step.
5.3 Performanceevaluation

To validate the reliability of the buiBARIMA model, it wasfurther compared with théorecastingresultsfrom both
LSTM and QRU (seeFig. 9). In total, two differenthourly-measureaffshorewind speedime serieonemonth spanjvere
evaluatedwhich were measured at the heighta¥mon April 2018and at the height of 67m on August 2018, respectively.
Again, he first 29 days ofhetime serieg01.04.2018 ~ 29.8.2018and01.(8.2018 ~ 29.8.2018 were useas thetraining
datasetsvhile the last 24 h dai@0.04.2018 an80.08.2018)wereextractedas theestingdatasetsAs presented ifrig. 9, the
SARIMA, GRU, and LSTMmodelsdisplayed a great agreement with tleeordedoffshorewind speedsn both cases
following the same tendency afttualmeasurementsdowever,all three predictivanodek showed a delayalongwith the

entiretime series.

Fig. 91 Comparison obffshorewind speedorecastingamongSARIMA, GRU, LSTMand actuamet mast
measurement@ote thatthe date and time formafi MMl d  HsHdllowedalong thehorizontal axiof Fig.9a and

Fig.9b, where MM is representing months, ddeépresenting dates, HH is representing hpurs.
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