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Abstract: The commuting graph of a finite non-abelian group G with center Z(G), denoted by Γc(G),
is a simple undirected graph whose vertex set is G \ Z(G), and two distinct vertices x and y are
adjacent if and only if xy = yx. Alwardi et al. (Bulletin, 2011, 36, 49-59) defined the common
neighborhood matrix CN(G) and the common neighborhood energy Ecn(G) of a simple graph G.
A graph G is called CN-hyperenergetic if Ecn(G) > Ecn(Kn), where n = |V(G)| and Kn denotes
the complete graph on n vertices. Two graphs G and H with equal number of vertices are called
CN-equienergetic if Ecn(G) = Ecn(H). In this paper we compute the common neighborhood energy
of Γc(G) for several classes of finite non-abelian groups, including the class of groups such that the
central quotient is isomorphic to group of symmetries of a regular polygon, and conclude that these
graphs are not CN-hyperenergetic. We shall also obtain some pairs of finite non-abelian groups such
that their commuting graphs are CN-equienergetic.

Keywords: commuting graph; CN-energy; finite group

MSC: 20D99; 05C50; 15A18; 05C25

1. Introduction

Let G be a simple graph whose vertex set is V(G) = {v1, v2, . . . , vn}. The common
neighborhood of two distinct vertices vi and vj, denoted by C(vi, vj), is the set of vertices
adjacent to both vi and vj other than vi and vj. The common neighborhood matrix of G,
denoted by CN(G), is a matrix of size n whose (i, j)th entry is 0 or |C(vi, vj)| according
as i = j or i 6= j. The common neighborhood matrix is a symmetric matrix, hence all its
eigenvalues are real. The common neighborhood eigenvalues are symmetric with respect
to the origin for some special class of graphs. There is a nice relation between CN(G)
and A(G), the adjacency matrix of G. More precisely, if i 6= j then the (i, j)th entry of
CN(G) is same as the (i, j)th entry of A(G)2, which is the number of 2-walks between the
vertices vi and vj. Further, the (i, i)th entry of CN(G) is equal to the degree of vi. Hence,
CN(G) = A(G)2 − D(G), where D(G) is the degree matrix of G. Let CN-spec(G) be the
spectrum of CN(G). Then CN-spec(G) is the set of all the eigenvalues of CN(G) with
multiplicities. If α1, α2, . . . , αk are the distinct eigenvalues of CN(G) with multiplicities
a1, a2, . . . , ak, respectively, then we write CN-spec(G) = {αa1

1 , αa2
2 , . . . , α

ak
k }. The common

neighborhood energy (abbreviated as CN-energy) of the graph G is given by

Ecn(G) =
k

∑
i=1

ai|αi|.
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The study of CN-energy of graphs was introduced by Alwardi et al. in [1]. Various
properties of CN-energy of a graph can also be found in [1,2]. The motivation of studying
Ecn(G) comes from the study of E(G), which is well-known as energy of G, a notion
introduced by Gutman [3]. Many results on E(G), including some bounds and chemical
applications, can be found in [4–15]. It is worth recalling that E(G) is the sum of the
absolute values of the eigenvalues of the adjacency matrix of G. It is also interesting
to note that E(G) can be obtained if Ecn(G) is known for some classes of graphs. For
instance, E(Kn) = Ecn(Kn)/(n− 2) and E(Km,n) =

√
Ecn(Km,n) + 2(n + n), where Kn is

the complete graph on n vertices and Km,n is the complete bipartite graph on (m + n)
vertices. A graph G is called CN-hyperenergetic if Ecn(G) > Ecn(Kn), where n = |V(G)|.
It is still an open problem to produce a CN-hyperenergetic graph or to prove the non-
existence of such graph (see [1] (Open problem 1)). In this paper we give an attempt to
answer this problem by considering commuting graphs of finite groups.

The commuting graph of a finite non-abelian group G with center Z(G) is a simple
undirected graph whose vertex set is G \ Z(G) and two vertices x and y are adjacent if and
only if xy = yx. We write Γc(G) to denote this graph. In [16–23], various aspects of Γc(G)
are studied. In Section 2 of this paper, we derive an expression for computing CN-energy of
a particular class of graphs and list a few already known results. In Section 3, we compute
CN-energy of commuting graph of certain metacyclic group, dihedral group (which is the
group of symmetries of a regular polygon), quasidihedral group, generalized quarternion
group, Hanaki group etc. We also consider some generalizations of dihedral group and
generalized quarternion group. Two graphs G and H with equal number of vertices are
called CN-equienergetic if Ecn(G) = Ecn(H). In Section 3, we shall also obtain some pairs
of finite non-abelian groups such that their commuting graphs are CN-equienergetic. As
consequences of our results, in Section 4, we show that Γc(G) for all G considered in
Section 3 are not CN-hyperenergetic. We also identify some positive integers n such that
Γc(G) is not CN-hyperenergetic if G is an n-centralizer group. It is worth mentioning that
CN-spectrums of Γc(G) for certain classes of finite groups have been computed in [24]
recently. However, the method adopted here, in computing CN-energy of Γc(G) for various
families of finite groups, is independent of CN-spec(Γc(G)).

Recall that an n-centralizer group G is a group such that |Cent(G)| = n, where
Cent(G) = {CG(w) : w ∈ G} and CG(w) = {v ∈ G : vw = wv} is the centralizer of w
(see [25,26]). We also identify some r ∈ Q>0 such that Γc(G) is not CN-hyperenergetic
if Pr(G) = r. Also recall that the commutativity degree of G, denoted by Pr(G), is the
probability that a randomly chosen pair of elements of G commute.

Readers may review [27–32] for the background and various results regarding this
notion. Further, we show that Γc(G) is not CN-hyperenergetic if Γc(G) is not planar or
toroidal. Note that a graph is planar or toroidal according as its genus is zero or one
respectively. Finally, we conclude the paper with a few conjectures.

2. A Useful Formula and Prerequisites

We write G = G1 t G2 to denote that G has two components namely G1 and G2. Also,
lKm denotes the disjoint union of l copies of the complete graph Km on m vertices. We
begin this section with the following two key results of Alwardi et al. [1].

Theorem 1 ([1] Proposition 2.4). If G = G1 t G2 t · · · t Gm then Ecn(G) =
m
∑

i=1
Ecn(Gi).

Lemma 1 ([1] Example 2.1). If Kn denotes the complete graph on n vertices then

Ecn(Kn) = 2(n− 1)(n− 2).

Now we derive a formula for CN-energy of graphs which are disjoint unions of some
complete graphs. The following theorem is very useful in order to compute CN-energy of
commuting graphs of finite groups.
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Theorem 2. Let G = l1Km1 t l2Km2 t · · · t lkKmk , where liKmi denotes the disjoint union of li
copies of the complete graphs Kmi on mi vertices for 1 ≤ i ≤ k. Then

Ecn(G) = 2
k

∑
i=1

li(mi − 1)(mi − 2).

Proof. By Theorem 1 we have

Ecn(G) =
k

∑
i=1

liEcn(Kmi ).

Therefore, the result follows from Lemma 1.

We conclude this section with the following useful results from [17,18].

Lemma 2. Let G be a finite group with center Z(G). If G
Z(G)

is isomorphic to

1. The Suzuki group Sz(2), presented by 〈u, v : u5 = v4 = 1, v−1uv = u2〉, then Γc(G) =
5K3|Z(G)| t K4|Z(G)|.

2. Zp ×Zp, for any prime p, then Γc(G) = (p + 1)K(p−1)|Z(G)|.
3. The dihedral group D2m (m ≥ 2), presented by 〈u, v : um = v2 = 1, vuv−1 = u−1〉, then

Γc(G) = K(m−1)|Z(G)| tmK|Z(G)|.

Lemma 3. Let G be a non-abelian group. If G is isomorphic to

1. A group of order pq, where p and q are primes with p | (q− 1), then Γc(G) = Kq−1 t qKp−1.
2. The quasidihedral group QD2n (n ≥ 4), presented by 〈u, v : u2n−1

= v2 = 1, vuv−1 =

u2n−2−1〉, then Γc(G) = K2n−1−2 t 2n−2K2.
3. PSL(2, 2k), the projective special linear group for k ≥ 2, then Γc(G) = 2k−1(2k − 1)K2k t

(2k + 1)K2k−1 t 2k−1(2k + 1)K2k−2.
4. GL(2, q), the general linear group where q = pn > 2 and p is a prime, then Γc(G) =

q(q−1)
2 Kq2−q t

q(q+1)
2 Kq2−3q+2 t (q + 1)Kq2−2q+1.

Lemma 4. Let G be a non-abelian group. If G is isomorphic to

1. The Hanaki group A(n, σ) (n ≥ 2) of order 22n given byU(x, y) =

1 0 0
x 1 0
y σ(x) 1

 : x, y ∈ F

,

under matrix multiplication where F = GF(2n) and σ ∈ Aut(F) given by σ(u) = u2, then
Γc(G) = (2n − 1)K2n .

2. The Hanaki group A(n, p) of order p3n given byV(x, y, z) =

1 0 0
x 1 0
y z 1

 : x, y, z ∈ F

,

under matrix multiplication where F = GF(pn) and p is a prime, then Γc(G) = (pn +
1)Kp2n−pn .

3. CN-Energy of Commuting Graphs

In this section, we compute Ecn(Γc(G)) for several classes of finite non-abelian groups.

Theorem 3. Let G be a finite group with center Z(G). If G
Z(G)

is isomorphic to
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1. The Suzuki group Sz(2), then

Ecn(Γc(G)) = 2(61|Z(G)|2 − 57|Z(G)|+ 12).

2. Zp ×Zp, then

Ecn(Γc(G)) = 2(p + 1)((p− 1)|Z(G)| − 1)((p− 1)|Z(G)| − 2).

3. The dihedral group D2m (m ≥ 2), then

Ecn(Γc(G)) = 2((m2 −m + 1)|Z(G)|2 − (6m− 3)|Z(G)|+ 2m + 2).

Proof. By Lemma 2 and Theorem 2 we have

Ecn(Γc(G)) =



2(4|Z(G)| − 1)(4|Z(G)| − 2) + 10(3|Z(G)| − 1)(3|Z(G)| − 2),
if G

Z(G)
∼= Sz(2)

2(p + 1)((p− 1)|Z(G)| − 1)((p− 1)|Z(G)| − 2),
if G

Z(G)
∼= Zp ×Zp

2((m− 1)|Z(G)| − 1)((m− 1)|Z(G)| − 2)
+2m(|Z(G)| − 1)(|Z(G)| − 2), if G

Z(G)
∼= D2m.

Hence, the result follows on simplification.

We have the following two corollaries of Theorem 3.

Corollary 1. Let G be isomorphic to one of the following groups

1. Z2 ×Q8,
2. Z2 × D8,
3. Z4 oZ4 = 〈u, v : u4 = v4 = 1, vuv−1 = u−1〉,
4. M16 = 〈u, v : u8 = v2 = 1, vuv = u5〉,
5. SG(16, 3) = 〈u, v : u4 = v4 = 1, uv = v−1u−1, uv−1 = vu−1〉,
6. D8 ∗Z4 = 〈u, v, w : u4 = v2 = w2 = 1, uv = vu, uw = wu, vw = u2wv〉.

Then Ecn(Γc(G)) = 36.

Proof. If G is isomorphic to one of the above listed group then it is of order 16. Therefore,
|Z(G)| = 4 and so G

Z(G)
∼= Z2 × Z2. Hence, putting p = 2 in Theorem 3 (2) we get the

required result.

Corollary 2. Let G be a non-abelian group.

1. If G is of order p3, for any prime p, then

Ecn(Γc(G)) = 2(p + 1)(p2 − p− 1)(p2 − p− 2).

2. If G is the metacyclic group M2mn (m ≥ 3), presented by 〈u, v : um = v2n = 1, vuv−1 =

u−1〉, then

Ecn(Γc(G)) =

{
2((m2 −m + 1)n2 − (6m− 3)n + 2m + 2), if m is odd
2((m2 − 2m + 4)n2 − (6m− 6)n + m + 2), if m is even.

3. If G is the dihedral group D2m (m ≥ 3), then

Ecn(Γc(G)) =

{
2(m− 2)(m− 3), if m is odd
2(m− 3)(m− 4), if m is even.
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4. If G is the generalized quaternion group Q4n (n ≥ 2), presented by 〈u, v : v2n = 1, u2 =

vn, uvu−1 = v−1〉, then

Ecn(Γc(G)) = 2(2n− 3)(2n− 4).

Proof. (1) If G is of order p3 then |Z(G)| = p and G
Z(G)

∼= Zp×Zp. Hence the result follows
from Theorem 3 (2).

(2) We have

|Z(M2mn)| =
{

n, if m is odd
2n, if m is even

and
M2mn

Z(M2mn)
∼=
{

D2m, if m is odd
Dm, if m is even.

Hence, the result follows from Theorem 3 (3).
(3) Follows from part (2), considering n = 1.
(4) Follows from Theorem 3 (3), since |Z(Q4n)| = 2 and Q4n

Z(Q4n)
∼= D2n.

In the following theorems we compute Ecn(Γc(G)) for more families of groups.

Theorem 4. Let G be a non-abelian group.

1. If G is of order pq, where p and q are primes with p | (q− 1), then

Ecn(Γc(G)) = 2(q2 + p2q− 5pq + q + 6).

2. If G is the quasidihedral group QD2n (n ≥ 4), then

Ecn(Γc(G)) = 2(2n−1 − 3)(2n−1 − 4).

3. If G = PSL(2, 2k) then

Ecn(Γc(G)) = 24k+1 − 4 · 23k+1 + 22k+1 + 6 · 2k+1 + 12.

4. If G = GL(2, q) then

Ecn(Γc(G)) = 2q6 − 6q5 − 2q4 + 10q3 + 6q2 + 2q.

Proof. (1) If G is of order pq then, by Lemma 3 (1) and Theorem 2, we have

Ecn(Γc(G)) = 2((q− 2)(q− 3) + q(p− 2)(p− 3)).

This gives the required result on simplification.
(2) Follows from Lemma 3 (2) and Theorem 2.
(3) By Lemma 3 (3) and Theorem 2 we have

Ecn(Γc(G))

2
= (2k + 1)(2k − 2)(2k − 3) + 2k−1(2k + 1)(2k − 3)(2k − 4)

+ 2k−1(2k − 1)(2k − 1)(2k − 2),

which gives the required result.
(4) By Lemma 3 (4) and Theorem 2 we have

Ecn(Γc(G)) = q(q + 1)(q2 − 3q + 1)(q2 − 3q) + q(q− 1)(q2 − q− 1)(q2 − q− 2)

+ 2(q + 1)(q2 − 2q)(q2 − 2q− 1),

which gives the required result on simplification.

Theorem 5. Let G be a non-abelian group.
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1. If G is the Hanaki group A(n, σ) then

Ecn(Γc(G)) = 2(2n − 1)2(2n − 2).

2. If G is the Hanaki group A(n, p) then

Ecn(Γc(G)) = 2(pn + 1)(p2n − pn − 1)(p2n − pn − 2).

Proof. The result follows from Lemma 4 and Theorem 2.

Note that all the groups considered above are abelian centralizer group (in short,
AC-group). Now we present a result on Ecn(Γc(G)) if G is a finite AC-group.

Theorem 6. Consider that an AC-group G has distinct centralizers X1, . . . , Xn of non-central

elements of G. Then Ecn(Γc(G)) = 2
n
∑

i=1
(|Xi| − |Z(G)| − 1)(|Xi| − |Z(G)| − 2).

Proof. We have Γc(G) =
n
t

i=1
K|Xi |−|Z(G)|, by [17] (Lemma 1). Therefore, by Theorem 2, the

result follows.

Corollary 3. Let K be a finite abelian group and H be a finite non-abelian AC-group. If G ∼= H×K
then

Ecn(Γc(G)) = 2
n

∑
i=1

(|Yi||K| − |Z(H)||K| − 1)(|Yi||K| − |Z(H)||K| − 2),

where Cent(H) = {H, Y1, . . . , Yn}.

Proof. Clearly Z(H×K) = Z(H)×K and Cent(H×K) = {H×K, Y1×K, Y2×K, . . . , Yn×
K}. Hence, H × K is an AC-group and so, by Theorem 6, the result follows.

We shall conclude this section by obtaining some pairs of finite non-abelian groups
such that their commuting graphs are CN-equienergetic.

Proposition 1. The commuting graphs of D4k and Q4k for k ≥ 2 are CN-equienergetic.

Proof. The result follows from parts (3) and (4) of Corollary 2.

Using Corollary 2 (parts (3) and (4)) and Theorem 4 (2) we also have the following re-
sult.

Proposition 2. The commuting graphs of D2k , Q2k and QD2k for k ≥ 4 are pairwise CN-
equienergetic.

4. Some Consequences

In this section we derive some consequences of the results obtained in Section 3.

Theorem 7. Let G be a finite group with center Z(G). If G
Z(G)

is isomorphic to Sz(2),Zp ×Zp or
D2m (where p is any prime and m ≥ 2) then Γc(G) is not CN-hyperenergetic.

Proof. If G
Z(G)

∼= Sz(2) then, by Theorem 3 (1), we have

Ecn(Γc(G)) = 2(61|Z(G)|2 − 57|Z(G)|+ 12).
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Since |V(Γc(G))| = 19|Z(G)|, by Lemma 1 we have

Ecn(K19|Z(G)|) = 2(19|Z(G)| − 1)(19|Z(G)| − 2) = 2(361|Z(G)|2 − 57|Z(G)|+ 2).

Clearly, 361|Z(G)|2 + 2 > 61|Z(G)|2 + 12 which gives Ecn(K19|Z(G)|) > Ecn(Γc(G)).
If G

Z(G)
∼= Zp ×Zp then, by Theorem 3 (2), we have

Ecn(Γc(G)) = 2(p + 1)((p− 1)|Z(G)| − 1)((p− 1)|Z(G)| − 2).

Since |V(Γc(G))| = (p2 − 1)|Z(G)|, by Lemma 1 we have

Ecn(K(p2−1)|Z(G)|) = 2((p2 − 1)|Z(G)| − 1)((p2 − 1)|Z(G)| − 2).

Clearly

((p2 − 1)|Z(G)| − 1)((p2 − 1)|Z(G)| − 2)

> ((p2 − 1)|Z(G)| − (p + 1))((p2 − 1)|Z(G)| − 2(p + 1))

> (p + 1)((p− 1)|Z(G)| − 1)((p− 1)|Z(G)| − 2.

Thus Ecn(K(p2−1)|Z(G)|) > Ecn(Γc(G)).
If G

Z(G)
∼= D2m then we have

Ecn(Γc(G)) = 2((m2 −m + 1)|Z(G)|2 − (6m− 3)|Z(G)|+ 2m + 2),

by Theorem 3 (3). Since |V(Γc(G))| = (2m− 1)|Z(G)|, by Lemma 1 we have

Ecn(K(2m−1)|Z(G)|) = 2(2m|Z(G)| − |Z(G)| − 1)(2m|Z(G)| − |Z(G)| − 2)

= 2((4m2 − 4m + 1)|Z(G)|2 − (6m− 3)|Z(G)|+ 2).

Clearly (4m2 − 4m + 1)|Z(G)|2 > (m2 −m + 1)|Z(G)|2 + 2m. Therefore,
Ecn(K(p2−1)|Z(G)|) > Ecn(Γc(G)). This completes the proof.

We have the following two corollaries.

Corollary 4. If G is isomorphic to one of the groups listed in Corollary 1, then Γc(G) is not
CN-hyperenergetic.

Proof. Since G
Z(G)

is isomorphic to Z2 ×Z2, the result follows from Theorem 7 considering
p = 2.

Corollary 5. Let G be a non-abelian group. If G is isomorphic to M2mn, D2m, Q4n or a group of
order p3 then Γc(G) is not CN-hyperenergetic.

Proof. If G is isomorphic to M2mn, D2m or Q4n then G
Z(G)

is isomorphic to some dihedral

groups. If G is isomorphic to a group of order p3 then G
Z(G)

is isomorphic to Zp × Zp.
Hence, by Theorem 7, the result follows.

We have the following results regarding commuting graphs of finite n-centralizer groups.

Theorem 8. If G is a finite 4-centralizer group then Γc(G) is not CN-hyperenergetic.

Proof. We have G
Z(G)

∼= Z2 ×Z2, by [25] (Theorem 2). Hence, using Theorem 7 for p = 2,
the result follows.

Theorem 9. Let G be a finite (p + 2)-centralizer p-group. Then Γc(G) is not CN-hyperenergetic.
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Proof. We have G
Z(G)

∼= Zp × Zp, by [33] (Lemma 2.7). Hence, by Theorem 7, the result
follows.

Theorem 10. If G is a finite 5-centralizer group then Γc(G) is not CN-hyperenergetic.

Proof. We have G
Z(G)

∼= Z3 × Z3 or D6, by [25] (Theorem 4). Hence, by Theorem 7, the
result follows.

As a corollary to Theorems 8 and 10 we have the following result.

Corollary 6. Let G be a finite non-abelian group and {x1, x2, . . . , xr} be a set of pairwise non-
commuting elements of G having maximal size. Then Γc(G) is not CN-hyperenergetic if r = 3, 4.

Proof. By [34] (Lemma 2.4), we have that G is a 4-centralizer or a 5-centralizer group
according as r = 3 or 4. Hence the result follows from Theorems 8 and 10.

Theorem 11. Let G be a non-abelian group. If G is isomorphic to QD2n , PSL(2, 2k), A(n, σ),
GL(2, q), A(n, p) or a group of order pr, where p and r are primes with p | (r− 1) and q = pm > 2,
then Γc(G) is not CN-hyperenergetic.

Proof. If G is isomorphic to QD2n then, by Theorem 4, we have Ecn(Γc(G)) = 2(2n−1 −
3)(2n−1 − 4). Since |V(Γc(G))| = 2n − 2, by Lemma 1 we have

Ecn(K2n−2) = 2(2n − 3)(2n − 4).

Clearly, (2n − 3)(2n − 4) > (2n−1 − 3)(2n−1 − 4). Hence, Ecn(K2n−2) > Ecn(Γc(G)).
If G is isomorphic to PSL(2, 2k) then, by Theorem 4 (3), we have

Ecn(Γc(G)) = 24k+1 − 4 · 23k+1 + 22k+1 + 6 · 2k+1 + 12.

Since |V(Γc(G))| = 2k(22k − 1)− 1 = 23k − 2k − 1, by Lemma 1 we have

Ecn(K23k−2k−1) = 2(23k − 2k − 1)(23k − 2k − 3)

= 26k+1 − 2 · 24k+1 − 3 · 23k+1 + 22k+1 + 5 · 2k+1 + 12.

Therefore,

Ecn(K23k−2k−1)− Ecn(Γc(G)) = 26k+1 − 3 · 24k+1 + 23k+1 − 2k+1

= 24k+1(22k − 3) + 2k+1(22k − 1).

Since 22k − 3 > 0 and 22k − 1 > 0 we have Ecn(K23k−2k−1)− Ecn(Γc(G)) is positive.
Hence, the result follows.

If G is isomorphic to GL(2, q) then, by Theorem 4 (4), we have

Ecn(Γc(G)) = 2q6 − 6q5 − 2q4 + 10q3 + 6q2 + 2q.

Since |V(Γc(G))| = (q2− 1)(q2− q)− (q− 1) = q4− q3− q2 + 1, by Lemma 1 we have

Ecn(Kq4−q3−q2+1) = 2(q4 − q3 − q2)(q4 − q3 − q2 − 1) = 2q8 − 4q7 − 2q6 + 4q5 + 2q3 + 2q2.

Therefore,

Ecn(Kq4−q3−q2+1)− Ecn(Γc(G)) = 2q8 − 4q7 − 4q6 + 10q5 + 2q4 − 8q3 − 4q2 − 2q

= 2q6(q2 − 2q− 2) + 2q2(5q3 − 4q− 2) + 2q(q3 − 2).
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We have q2 − 2q − 2 = q(q − 2) − 2 > 0, 5q3 − 4q − 2 = q(5q2 − 4) − 2 > 0 and
q3 − 2 > 0 since q = pm > 2 for some prime p. Therefore, Ecn(Kq4−q3−q2+1)− Ecn(Γc(G))
is positive and hence the result follows.

If G is isomorphic to A(n, σ) then, by Theorem 5 (1), we have Ecn(Γc(G)) = 2(2n −
1)2(2n − 2). Since |V(Γc(G))| = 2n(2n − 1) = 22n − 2n, by Lemma 1 we have

Ecn(K22n−2n) = 2(22n − 2n − 1)(22n − 2n − 2).

Clearly, 22n − 2n − 1 > 22n − 2 · 2n − 1 = (2n − 1)2 and 22n − 2n − 2 > 2n − 2.
Therefore, Ecn(K22n−2n) > Ecn(Γc(G)).

If G ∼= A(n, p) then, by Theorem 5 (2), we have Ecn(Γc(G)) = 2(pn + 1)(p2n − pn −
1)(p2n − pn − 2). Since |V(Γc(G))| = (pn + 1)(p2n − pn), by Lemma 1 we have

Ecn(K(pn+1)(p2n−pn)) = 2((pn + 1)(p2n − pn)− 1)((pn + 1)(p2n − pn)− 2).

We have

(pn + 1)(p2n − pn − 1)(p2n − pn − 2)

< (pn + 1)(p2n − pn − 1)(pn + 1)(p2n − pn − 2)

= ((pn + 1)(p2n − pn)− (pn + 1))((pn + 1)(p2n − pn)− 2(pn + 1))

< ((pn + 1)(p2n − pn)− 1)((pn + 1)(p2n − pn)− 2).

Hence, Ecn(Γc(G)) < Ecn(K(pn+1)(p2n−pn)).
If G is isomorphic to a non-abelian group of order pr then, by Theorem 4 (1), we have

Ecn(Γc(G)) = 2(r2 + p2r− 5pr + r + 6).

Since |V(Γc(G))| = pr− 1, by Lemma 1 we have

Ecn(Kpr−1) = 2(pr− 2)(pr− 3) = 2(p2r2 − 5pr + 6).

Since r + 1 ≤ 2(r− 1) < p2(r− 1) we have r2 + p2r + r < p2r2. Hence, Ecn(Kpr−1) >
Ecn(Γc(G)). This completes the proof.

It is already mentioned that Pr(G), the commutativity degree of a group G, is the
probability that a randomly chosen pair of elements of G commute. Therefore, it measures
the abelianness of a group. For any finite group G, its commutativity degree can be
computed using the formula

Pr(G) =
1
|G|2 ∑

w∈G
|CG(w)| or Pr(G) =

k(G)

|G| ,

where k(G) is the number of conjugacy classes in G. In finite group theory, it is an interesting
problem to find all the rational numbers r ∈ (0, 1] such that Pr(G) = r for some finite group
G. Over the decades, many values of such r have obtained and characterized finite groups
such that Pr(G) = r. In the following theorem we list some values of r such that Γc(G) is
not CN-hyperenergetic if Pr(G) = r.

Theorem 12. If Pr(G) ∈ { 5
14 , 2

5 , 11
27 , 7

16 , 1
2 , 5

8} then Γc(G) is not CN-hyperenergetic.

Proof. If Pr(G) ∈ { 5
14 , 2

5 , 11
27 , 7

16 , 1
2 , 5

8} then G
Z(G)

is isomorphic to the groups in {D14, D10, D8,
D6,Z2 × Z2,Z3 × Z3} (by [35] (p. 246) and [36] (p. 451)). Hence, the result follows from
Theorem 7.
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Theorem 13. Let G be a finite group and Pr(G) = p2+p−1
p3 , where p is the smallest prime divisor

of |G|. Then Γc(G) is not CN-hyperenergetic.

Proof. We have G
Z(G)

∼= Zp × Zp, by [37] (Theorem 3). Hence the result follows from
Theorem 7.

Theorem 14. If G is a finite non-solvable group and Pr(G) = 1
12 then Γc(G) is not CN-

hyperenergetic.

Proof. We have G ∼= A5 × K for some abelian group K, by [27] (Proposition 3.3.7). It can
be seen that Γc(G) = 5K3|K| t 10K2|K| t 6K4|K|. Therefore, by Theorem 2, we have

Ecn(Γc(G)) = 2(5(3|K| − 1)(3|K| − 2) + 10(2|K| − 1)(2|K| − 2)) + 6(4|K| − 1)(4|K| − 2))

= 2(181|K|2 − 177|K|+ 42).

Additionally, by Lemma 1, we have Ecn(K59|K|) = 2(3481|K|2− 177|K|+ 2). Therefore

Ecn(K59|K|)− Ecn(Γc(G)) = 2(3300|K|2 − 40) > 0.

This completes the proof.

The following three theorems show that Γc(G) is not CN-hyperenergetic if Γc(G) is
planar/toroidal or the complement of Γc(G) is planar.

Theorem 15. Let G be a finite non-abelian group. If Γc(G) is planar then Γc(G) is not CN-
hyperenergetic.

Proof. If G ∼= D12, D10, D8, D6, Q8 or Q12 then, by Corollary 5, we have that Γc(G) is not
CN-hyperenergetic.

If G is isomorphic to one of the groups listed in Corollary 1 then, by Corollary 4, it
follows that Γc(G) is not CN-hyperenergetic. If G ∼= A4 then it can be seen that Γc(G) =
K3 t 4K2. Using Theorem 2, we have Ecn(Γc(G)) = 4. Also, by Lemma 1, we have
Ecn(K11) = 180. Therefore, Γc(G) is not CN-hyperenergetic. If G ∼= Sz(2) then G

Z(G)
∼=

Sz(2). Therefore, by Theorem 7, it follows that Γc(G) is not CN-hyperenergetic. If G ∼=
SL(2, 3) then it can be seen that Γc(G) = 3K2 t 4K4. Therefore, by Theorem 2, we have
Ecn(Γc(G)) = 48. Also, by Lemma 1, we have Ecn(K22) = 840. Therefore, Γc(G) is not
CN-hyperenergetic.

We have PSL(2, 4) ∼= A5. Therefore, if G ∼= A5 then it follows that Γc(G) is not
CN-hyperenergetic (follows from Theorem 11).

If G ∼= S4 then the characteristic polynomial of CN(Γc(G)) is given by x8(x− 3)2(x +
1)11(x2 − 5x− 30) and so

CN-spec(Γc(G)) =

08, 32, (−1)11,

(
5 +
√

145
2

)1

,

(
5−
√

145
2

)1
.

Therefore, Ecn(Γc(G)) = 17 +
√

145. Additionally, by Lemma 1, we have Ecn(K23) =
924. Therefore, Γc(G) is not CN-hyperenergetic. Hence, the result follows from [38]
(Theorem 2.2).

Theorem 16. Let G be a finite non-abelian group. If Γc(G) is toroidal then Γc(G) is not CN-
hyperenergetic.

Proof. If G ∼= D14, D16 or Q16 then by Corollary 5 it follows that Γc(G) is not CN-
hyperenergetic. If G ∼= QD16 then, by Theorem 11, we have that Γc(G) is not CN-
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hyperenergetic. If G is isomorphic to Z7 oZ3 then Γc(G) is not CN-hyperenergetic, follows
from Theorem 11 considering p = 3 and r = 7. If G ∼= D6 ×Z3 then G

Z(G)
∼= D6. Therefore,

by Theorem 7, Γc(G) is not CN-hyperenergetic. If G ∼= A4 × Z2 then it can be seen that
Γc(G) = K6 t 4K4. Therefore, by Theorem 2, we have Ecn(Γc(G)) = 2(5 · 4 + 4 · 3 · 2) = 88.
Also, by Lemma 1, we have Ecn(K22) = 2 · 21 · 20 = 840. Hence, Γc(G) is not CN-
hyperenergetic. Hence, the result follows from [39] (Theorem 6.6).

We also have the following result.

Theorem 17. Let G be a finite non-abelian group. If the complement of Γc(G) is planar then Γc(G)
is not CN-hyperenergetic.

Proof. The result follows from [40] (Proposition 2.3) and Corollary 5.

In view of the above results we conclude this paper with a few conjectures.

Conjecture 1. A planar or toroidal graph is not CN-hyperenergetic.

Conjecture 2. Γc(G) is not CN-hyperenergetic.

Conjecture 3. If G = l1Km1 t l2Km2 t · · · t lkKmk , where liKmi denotes the disjoint union of li
copies of the complete graphs Kmi on mi vertices for 1 ≤ i ≤ k, then it is not CN-hyperenergetic.
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