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Abstract

Waste auditing is one of the tools used to quantify waste generation in construction processes, especially in industrialized
building construction facilities that aim to reduce waste. These audits are organized following a regular schedule to monitor
manufcturing activities with respect to the waste generated. However, the identification and quantification of waste through
occasional audits of activities at any particular workstation remains a biased, manugka@repand monotonous task. This

paper poposes the automation of waste auditing in industrialized construction facilities, using as a case study a cutting station
on a window manufacturing line. The waste generated during the cutting process is quantified usingbasatbimage
processing algrithms, and the identification of the material is determined by optimized deep learning classification models.
This approach allows the continuous acquisition of waste generation data at the workstation level and endblesndata
waste management deiois-making that has the potential to support the reduction of waste in industrialized building
construction facilities.
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1. Introduction

The construction industry is, directly and indirectly, responsible for approximately 40% of all the natural resource mmsumpt

and waste generated each year in North America (Agamuthu, 2008). The Canadtainction industry generates about 27%

of the total municipal solid landfill deposits in the form of construction and demolition wastes (Yeheyis et al., 2013). The
consumption of these natural resources is contributing to the degradation of the envimmenkmge scale (MercadBtoyano

& Ramirezde-Arellano-Agudo, 2013). Meanwhile, a reliable estimation of construction waste can help mitigate the impact of
such waste at the project level. In other words, one cannot reduce what it cannot measure{@ue2@19). Prefabrication

and offsite construction techniques have been identified as one way of reducing waste generation in the construction industry
(Ajayi et al., 2015). By having a controlled manufacturing environment, waste reduction apprzacheseffectively applied

to monitor, control, and optimize waste reduction efforts during construction and fabrication processes (Banihashemi et al.,
2017).

From a lean perspective, waste is anything in any manufacturing process that adds no valm®dutchéom the customer's

point of view. On a production line, it is inevitable that over time some parameters of the process deviate from optimal
performance and generate material waste. Ultimately, this waste reduces the production efficiencytyofl thegbroduction
processes (Psarommatis et al., 2020). Lower productivity eventually affects the profitability of the manufacturer, tuhigh, in
might be transferred to the customer in terms of higher product cost or lower quality, negativetinogrpestomer satisfaction.

For offsite construction practitioners, quality and productivity are crucial factors for a successful business. Waste igducti
sustainable policy for construction practitioners, especially in offsite construction, wkecerttrolled environment and the
repetitive nature of their processes facilitate the introduction of waste reduction actions that can be rapidly intelgrated an
continuous.

Waste auditing, the first step in any waste reduction approach, aims to efficiesstlys the magnitude and composition of the

waste generated by the manufacturing processes, which can initiate a strategic plan to prevent, reduce, or utilize the specif
waste under study. To be effective, waste audits must be done thoroughly in aasgsteamner under the direction of a
dedicated waste supervisor who has dorsgiecific experience and knowledge of waste audit procedures and rationale. Despite
their benefits, waste audits are a labdensive and costly, albeit necessary, procedurenforufacturers. As an Industry 4.0
approach, smart automated waste auditing and reporting processes have been identified as one of the key areas talbe researct



that would enable zerawaste manufacturing and a more circular economy (Kerdlap et al., 28&Bpugh zerewaste
manufacturing requires the integration of various technologies across the value chain, smart waste auditing and waiste reducti
planning are the first steps forward and represent the primary and initial challenges for waste gesiarhtassorganizations
operating in the offsite construction manufacturing industry.

For example, in the window manufacturing industry, waste audits are conducted to assess production process performance an
to plan the recycling processes required fentlaste materials, including aluminum and polyvinyl chloride (PVC). These waste
audits are especially important as most of the manufacturing processes are high volume, and small changes in the performanc
may considerably affect the amount of material egstinerated. For that reason, waste audits occur as often as twice per month,
which can be considered an important effort when compared to, for example,-thergsix mandatory waste audit schedule
required by some provincial regulations in Canada (e.gtai® Regulation 102/94). On window production lines, waste is
generated from three main sources: 1) the cutting stations where the stock length of glass or window frame material, i.e.,
aluminum or PVC, is cut to specified sizes generating waste (remaiaterial from the stock length and scrap from the cutting
process); 2) deviations in the process parameters at automated stations on the production line, e.g., welding or sagner clean
that generate neremanufacturable defective parts; and, 3)-nomforming products that are separated during quality control
inspections after manual operations, i.e., assembly of window hardware components or glass installation.

The present study proposes an automated waste auditing procedure using computer siep aaning technologies, which

is then applied to audit the profile cutting station for unplasticized polyvinyl chloride (uPVC) windows. When a custemer ord

is confirmed and a shop order is generated, cutting stations are the first stations irdtletiqgergprocess sequence. Waste
auditing at these upstream stations can capture the generation of waste before it propagates its inefficiencies doanstream th
production line. This paper is structured as follows: first, a literature review of currentteseads around waste management

and waste auditing is provided; then, the research methodology is presented. Next, the window manufacturing use case is
reported, explaining current practice as a benchmark, the proposedhasiet model, and the algbrns used to acquire the

data. Finally, the results are presented and discussed beftirgy with someonclusive remarks.

2. Literature Review

The increasing awareness regarding the construction industry's environmental impact from construction watte ttas le
development of many research studies regarding waste management practices. Adverse impacts of waste generation i
construction processes are multiple, including occupying a large amount of land space for waste landfilling (Poon3t al., 200
hazadous pollution (Esin & Cosgun, 2007), and continuous depletion of natural resources (Yuan & Shen, 2011). Although

i mpractical and potewasiadbl gasnbeanhtabéegoakedpoadeantiasded by r e
to a wellestdlished hierarchy for waste management methods comprising four levels (from less to more desirable): dispose,
recycle, reuse, and reduce (Peng et al., 1997). While the three main strategies for waste management (recycle, raasg, and red
are the cornershes of current practices, the reduction of waste is the desired end for any waste management approach.

Apart from minimizing material usage, waste reduction offers other major benefits: cost reduction associated with material
transportation and with wasttisposal and recycling, reduced emissions, and reduced material cost (Poon, 2007). Waste
reduction is considered the most effective and efficient method available to minimize the impact of construction watite genera
and alleviate many of the environntahproblems associated with waste disposal. Although some recent examples of the merits
of construction waste management can be found in, for example, Australia (Park & Tucker, 2017) or China (Huang et al., 2018),
its practical application lacks a fundamw& link between waste management practices and the factors that contribute to the
generation of waste in the construction industry (Kabirifar et al., 2020). Another barrier to the adoption of effectyiestrat

for waste reduction is the lack of timeand proper communication between the various actors who need to cooperate in
implementing and executing such strategies; therefore, most stakeholders limit themselves to waste reduction actiogis within t
own management cycle (Esa et al., 2017).



A potential waste reduction solution that has been increasingly advocated for by industry is prefabrication. Prefabrication is a
strategy that brings the manufacture of structures or components to a location other than the construction site. Also known a
offsite construction or industrialized construction, the products are generally manufactured in a specialized facility where variou
materials and a degree of automation can be used in a controlled environment (Ritter et al., 2020). In prefabricasitimethe po
impacts of waste reduction could be observed if the correct tools are used on the production lines to address potéhsial waste

et al., 2007). Among the tools available to address waste generation, waste audits (or waste inspections) haveriméitiged dete
the effectiveness of process implementation by monitoring and analyzing the trends of waste generation. In construction and
demolition industries, waste audits can be used to quantify waste flows, estimate recycling rates of common wastenthaterial, a
examine the factors affecting secondary waste markets (Marcellus et al., 2013). Moreover, waste audits have been used tc
determine the impact of waste management execution in industrialized construction projects (Jaillon et al., 2009; Lu & Yuan,
2013).

Intelligent or automated waste audits that comprise hardware and software solutions can quantify waste, segregate waste, 0
assess waste reduction and diversion opportunities through recycling or reuse. Quantitative and accurate waste audits and was
estimation are essential requirements for effective construction waste management (Li et al., 2016). Current hardware research
is primarily focused on the area of smart waste bins that automatically segregate waste by analyzing the material content anc
size though visual sensors, e.g., cameras and lasers (Wijaya et al., 2017), reducing disposaitedDorihe software side,

online tools have been developed that carry out data analytics on waste management processes to review waste collectio
systems, exting waste management practices and costs, and current levelsité oecycling and energy consumption (Yen

Ting et al., 2017). These digital tools and technological advances are able to identify opportunities for improvemest in wast
management procerks. A clear reduction in material waste resulting from automated waste audits has been recently reported
(Ragkoviil et al ., 2020) . In construction, a commeied i al t
SMARTWaste that simplifies porting for environmental compliance and management of construction waste during projects.
Users have reported up to 40% waste reductiositenusing this platform (Kerdlap et al., 2019). More recently, a deep
convolutional neural network (CNN) was useddassify typical construction wastes using digital photos of waste material
disposed of in construction site bins, with a reported accuracy of approximately 94% (Davis et al. \e@2é)audits
(automated or not) provide, at best, a snapshot of thie \waserated by a process for which waste management approaches may
lead to plans to reduce waste in future projects. However, sporadic waste audits cannot accurately predict the imgast of chan

to the production line on waste generation. The benefitdafstrialized construction is the repetitiveness of the manufacturing
processes, which can facilitate the translation of waste management practices into measurable waste reduction. Systematic was
audits provide better insight into the relationship betwgrocess factors and waste generation and can optimize waste reduction
efforts through the implementation of dateven techniques and intelligent data analytics (Bilal et al., 2016).

In summary,many research studies have considered waste reducti@m agtimization problem whermesign and process
parameters could be analyzed to determine optimal stratddiese strategies follow weihown methodologies and have
proven successful to reduce waste in manufacturing environnientglidate those strategies, waste audits are common to
measure waste creatddowever certain limitationsf the current research solutions carlisied

1 Manual waste auditprovide timelimited feedback on waste reduction strategies and cannot be used for long term
assessment#s the development and validation of different waste reduction strategietaiged this redue@sindustrial
facilitiesto achiee sustainabilityargets.

1 Manufacturing processes are becoming more flexible, introducing new products and features quickly to satisfy client
requirementsAs those changeare introducedht the process level, waste generation increases its variakitidgring
previouswaste audits outdatedcequiring collecting new sets of data to quantify the new levels of waste being generated.



1 Also, manual waste auditeecome more expensive to perform as labor costs ingoeassuring industries fond alternative
sol uti ons t ewaadeisdirececosiiaf wast® audits impedes to scale up waste reduction stristesgipport
sustainability within manufacturing processes.

From this perspective, the development of continuous data acquisition systenmitti@utomate the waste auditing process
would benefit industrialized construction facilities by reducing labor costs, increasing the accuracy of data acquisitory pr
continuous monitoring of wastgenerating construction processes, and reducingrifmint of time between implementation

and determining the measurable impacts of the waste reduction policies. This paper aims to present this approactessing as a ¢
study a window manufacturing line at a production facility in Canada.

3. Methodology

Theapproach proposed herein adopts a data science research (DSR) methodology to quantify the waste generated during cuttin
operations on a window manufacturing line using computer vision techniques. The DSR methodology differs from other types
of methodologes by aiming to develop an artifact: something that is useful and improves the problem that is identified and
explained in the context of the research gap (Hevner et al., 2004). The process of developing an artifact consistsusf a rigor
procedure of idetifying gaps in the literature and developing the artifact and its evaluation methods in a structured and replicable
manner while clearly communicating its outputs. The artifact developed in this paper consists of-bagsm@approach to
automatically gantify waste generated and to enable continuous auditing of manufacturing operations in an industrialized
construction facility. In possession of this artifact, it is possible to track the amount of waste generated in a proadasgeo

sample of datavithout being restricted to a few examples collected during regular waste audits. This methodology has been
previously applied, as equally successfully, in the development of sisisad approaches to, for example, track productivity
(Martinez et al., 2P1) or monitor safety (Fang et al., 2018) in the industrialized construction sector.

Overall, the approach presented in the present study aims to generate the information required to automatically pcpelate a wa
audit form using machine vision amaterprise resource platform (ERP) information. The proposed system captures a set of
images after each cut is performed, enabling instantaneous identification of the profile being cut and quantificaticastd the
generated during that process usingetdmage processing techniques. An overview of the proposed approach is illustrated in
Figure 1, and the details regarding its implementation are presented in the following sections.
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Figure 1. Proposed architecture for automated waste audits via deemtgand machine vision.

4. Case study: waste audit at a uPVC window profile cutting station



Current waste audit practice

Presently, biweekly manual waste audits (MWASs) are conducted by production supervisors at the unplasticized polyvinyl
chloride (uPVC) window manufacturing cutting station under study in order to assess the manufacturing processes in terms of
material wast generation. The results will feed back into an ERP system to adjust production costs and improve production
practices (Jituri et al., 2018). In addition, the results of the MWASs represent a benchmark against which the proposet framew

in the present atly is evaluated.

For the purpose of data collection, the steps required to complete an MWA are followed to conduct 21 waste audits in a uPVC
window manufacturing facility over a period of four weeks. The experiments are carried out during normal werkitthds

few interruptions to production operations as possible. A standard operating procedure (SOP) is developed and refined to
accommodate the working conditions of the cutting stations where the MWAs are completed. Each experiment took
approximately3 hours, on average, to complete, which is considered a long time.

The first step of the MWA procedure is to populate the waste audit form with identification information such as the date and
time when the audit is conducted, the raw material profile numabe length, and the station at which the profile is to be cut.
The following steps are then carried out to quantify the total length of material waste for a sample production run:

1. Ensure that the material processed at the station that day matchesdhal toalbe audited.

2. Measure the raw material profile length (). Profile lengths vary between 14 and 21 feet and depend on the supplier
and profile type.

3. Determine the number of windows to audit based on the sequence of windows tallnenguthe audited shift.

4. Based on the number of windows in production, determine the number of cut pifiles ( ) needed to produce all
windows in the batch, as estimated by Equation (1):

6 ¢c — B 1)

where () is the length of a singleindow part, £) is the total number of parts to be cut in the batch, and two extra
pieces are added to account for the waste on both profile extremes.

5. Collect all the material waste in the current abditch in a designated recycling bin.

6. Based on the collected material, calculate the actual length used to manufacture the designated window batch according
to the Equations (2)4):

a a a 2)
0 z (3)
B o 4)

where @ ) is the total length of the profiles uploaded, () is the total length of material leftover after the
audit is complete, Q is the total number of leftover pieces, anal)(is the length of each piece.

7. Obtain the material lengths required for the window manufactuting ( ) from the central production database.
The windows in the batch to be audited are extractad the daily production reports.
8. Calculate the wasted material length as shown in Equation (5):
a o} o} o} (5)

9. Finally, calculate the percentage of waste material by length according to Equation (6):



b — (6)

One motivation for the current study is to reduce the time it takes to conduct a waste audit by implementing an autemated sys
to complete waste audits more frequently at the cutting stations with minimalptterr to the production work. It is worth
noting that each MWA is performed on a singledow profile; however, the cutting stations where the audit is being performed
can accommodate several profile types during the same work shift. Table 1 showkfi@disymthetic example of one MWA

form. The form is divided into three sections: 1) audit preparation and identification, 2) data collection from the enterpris
resource platform (ERP) system and the ongoing floor operations, 3) waste calculatioreithseeljuations above.

Table 1.Example of a manual waste audit form.

1) Audit Preparation

Date of audit 201912-16 Start and end time 12:03 PM to 12:58 PM

Production line Line ID #2 Material ID code 402867

2) Data Collection

Raw material profile 16 ft # Profiles pulled 15
length
Number of parts to be cu| 69 Required length (BOM) | 189 ft (57,607 mm)

3) Waste Calculation

Total leftover length 11,010 mm Total pulled length 73,152 mm

Total waste length 4,535 mm Waste percentage 6.2 %

Window frames are typically composed of a minimum of four profiles (see Figure 2.a). Each window is composed of three pieces
of the same profile type, and the fourth piece is of a slightly different profile that must accommodate weeping holes for wat
dranage. The lengths of the parts range from approximately 300 mm to 4,900 mm. To benchmark the current waste audit results,
an MWA is performed for the cutting station at which the highest volume of cuts are performed per hour. Figure 2.b shows the
guantitdive distribution of the profile lengths in the MWA, with mean and median values of 890 mm and 760 mm, respectively.
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Figure 2. (a) Schematic of the typical window parts, (b) Distribution of window part lengths obtained during the MWA
experiment.

Data acquisition system

This subsection presents the proposed vibiased model developed to obtain the necessary visual data to identify and measure
window profile waste from cutting stations. The aim of this system is to extract the information necessanylébe the waste

audit forms. The system is developed aroue@acci Machinescut-off saw (model TRAS 45GA), and Figure 3 illustrates a
schematic of the proposed visibased system as applied to the aforementioned machine.
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Figure 3. Schematic modef the visiornbased system at the cutting station under study.

The window profiles made of raw uPVC material are manually introduced by the operator into the double head cutting machine,
which can take up to four profiles at one time. The operator aligngrofile against the guides that keep the profile in position
when cut by the saw. The operator manually inputs the required cut length into the computer numerical control (CNC) machine.
The cutting machine automatically adjusts, leaving any excessiatldteyond the saw cutting line. The operator then proceeds

to start the automated cutting process, after which théodanhgth profile is manually removed. The excess waste material is
automatically pushed out of the machine area towards the pradéeveollection area, where the proposed vision system
captures the images that are used to identify the excess profile material and measure the dimensions of the cuthgrofiles in t
waste area.

The proposed system provides rale data acquisition regéing the cutting operations as they occur. In order to automatically
populate the MRW form, the system must identify the profile type being cut and the length of profile waste resultinghfrom eac
cut. Once this data is obtained, the rest of the necessgarynation is inferred using the available ERP information and is
calculated using Equations (1) through (6) as presented above. The following subsections detail the processes empayed to ext
this information from the images obtained using the viseiasars.

Profile identification

By processing the visual data obtained using optical sensors, the present study proposes a supervised learning apgsoach, such
deep learning, to identify the type of window frame profile that is currently being auditete @bénsive industrial defect
detection methods, such as feature selection, can provide comprehensive results, such solutions remain limited to the
characteristics and features of the final product. Thus, if a new feature is introduced in the proglucetai problems may

arise (Weimer et al., 2016). In window manufacturing, profiles are updated and changed frequently; thus, an easily updatable
and robust process is required that does not rely edegfieed profile features.



In contrast to manually engineered image processing solutions, supervised machine learning approaches, such as deep learnin
may be used to overcome the limitations inherent in manually redefining the features for each new inspection problem in a
reactivefashion. The complexity of identifying window profiles is due to the size of the geometrical features that differentiate
one from another. In other words, the transverse section of each profile is of a clearly different shape. As wastederofiles
obtaned from a cutting process, the profile crgsstion is clearlyisible,and the geometrical features are identifiable.

The present study investigates the use of convolutional neural networks (CNNSs) to extract those geometrical featusdy and clas
the at profiles by type based on initial search parameters. This approach is a popular and successful approach in theconstructio
sector, being employed to classify objects with small features such as screws on steel frames (Martinez et al., 2@R8b) or cra
in concrete surfaces (Cha et al., 2018).

To develop a supervised deep learning model, a database is created that contains visual data of the target windowefame profi
The selected profiles are chosen based on production volume and variability is. Stepdataset used in this study contains

1,752 unique images of four different profile types. The images are manually labeled and have a resolution of 1,446 x 2,316
pixels. Images are of a single profile, captured in different lighting conditions ardaiions. A total of 377, 438, 478, and 459

i mages are used from profiles A4028670, 4206970, 40286
this study are shown in Figure 4. A collection of random sample images from the dedast@dwn in Figure 5.

402861

Figure 4. Left: bar chart with the number of images per window profile type in the developed dataset. Right: a sample image for
each profile type in the developed dataset.



Figure 5. Sample images from the dataset used for training and validation of the CNN models

To identify window profile types using CNNs, several common and easily accessible architectures are investigated in order to
compare them to determine which performs best. In this study, VGG16, VGG19, Xception (MobileNet), DNET169, ResNet50,
ResNet101,rnception v3, and AlexNet are tested. As the classification problem itself is simple enough, transfer learning is used
to reduce training time and motivate ease of replication. Transfer learning, it should be noted, has proven to beneffective i
reducing canputational demand and in providing accurate trained models even with small datasets (Han et al., 2018). For that
reason, all the neural networks have beentf@ieed with the COCO dataset and the main convolutional base remains frozen
and only the finalayers (SoftMax classification layers) for each model are retrained for the purpose of window profile type
identification.

To generate valid training and validation datasets, images are randomly selected from the labeled images such thaf each type
labeB for each type of window profife represents a minimum of 15% of all the images contained in the validation set. The
remaining images are used for training the neural networks. Hence, the training and validation datasets contained 5227 and 52
images, respively. Both training and validation are performed using Keras and TensorFlow libraries within a Python
environment.

The environment in which the neural networks were trained had important computational limitations. As such, the fine tuning o
the model iperparameters aims to maximize classification accuracy while aiming to reduce the computational power required
to train and validate the models. Therefore, certain limitations are introduced during the training phase: all the fodideling
architecturesre trained using stochastic gradient descent with momentum optimizer, starting with a momentum of 0.9, and a
batch size of 32. The hyperparameters analyzed are the number of epochs and the initial learning rate. Note thatgthe learnin
rate is set to deease by a factor of 10 if the learning process stagnates and validation loss has not decreased by more than 0.000:
after 5 epochs, reducing the computational time needed to analyze the training process.
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The first hyperparameter to lfime-tunedis the leaning rate, as it has the least amount of flexibility when usingrpieed

models. The learning has to be decreased from its initial learning rate (by default, 0.1 for the COCO dataset), as only an
adjustment of the weights is required. Therefore, anirgapapproach is taken to adjust the learning rate, decreasing from 0.1
towards 16, while checking the variance of the loss values in a fixed number of epochs (5 epochs are used in this study). The
optimal learning rate for fine tuning of ptained nodels can be found where the loss decreases the least during that learning
interval (Smith, 2015). For each model studied, the final training loss after 5 epochs against the learning rate is-ghoen in

6.
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Figure 6. Learning rate optimization resuftsr the models under study.

As observed, most models have a clear decrease in loss value in the interval from 0.001 to 0.01 followed by an immediate
increase for learning rates above 0.01. For learning rates smaller than 0.001, the testedbsedelsmall decreases in loss
values as the learning rate increases (except the sudden drop in loss for ResNet50 b&tamdd D As models are already
pretrained, the optimal learning rate aimsvery the weights slowly but gradually the netvork. Therefore, the learning rate

moving forward for all models is set to-40Vhile an optimum could have been reached for each model individually, a common
optimal learning rate is selected as the loss variance is negligeable between values intékeistdesal and it simplifies the

training process in the following steps.

With the selected learning rate, all the models are trained and validated for 100 epochs. To reduce the computational power
required to run the model, minimization of the epoclueas targeted while achieving maximum accuracy. Figure 7 shows the
accuracy and loss values obtained during the training and validation processes for altrfiagntenodels selected. Note that

only the first 25 epochs are illustrated as, by that,timest models had alreadtabilized,and it permits a clearer visualization.
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Figure 7. Training and validation results for the models under study. Left: model accuracy against number of epochs. Right: loss
value against number of epochs.

The computatioal performance of the CNN models can be analyzed by comparing accuracy and loss values with respect to
epoch count. In this study, the maximum accuracy achieved during training is 99.4%. The VGG16, Xception, and ResNet50
architectures are capable of achmgvsuch accuracy at the,919", and 18 epoch, respectively. Similarly, minimum loss is
achieved by those models at the®23", and 17 epoch respectively. An overview on the epoch optimization results can be
found in Figure 8.
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Figure 8. Epoch optimization from validation results for the models under study.
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Whereas loss and accuracy for both training and validation results are obtained directly from the libraries used, astmore robu
metric is needed to evaluate the performance of rolaltis classifiers, such as the ones used in this research. For the present
study, the micreaveraged F1 scorédd ) and macreaveraged F1 scoré&) ) are used and can be calculated directly from

the training and validation raw results aswh in Equations 7 and 8. These metrics have been used consistently in academia to
measure neural network performance where a small number of positive instances for a label are present, which is the case fo
this study.

0 (@)
0 5 85 & 8)

where (Y0), (OU), and [O0) are the true positives, false positives, and false negatives, respectively, fofxTesié 2 presents
the metrics used for analysis of theigiation results obtained for each one of the models studied, under the optimized
hyperparameters.

Table2.Li st of metricsd results for the validation g
Model Architecture | TP | FN | FP | Fmicro | Fmacro
VGG16 521 | 3 1 0.98 0.98
VGG19 513| 8 4 0.96 0.95
Xception 522 | 3 0 0.98 0.99
6
1
4

DNET169 506 13 | 0.96 0.94
ResNet50 522 2 0.98 0.97
ResNet101 501 20 | 0.94 0.95
Inception v3 509 | 11 | 5 0.96 0.95
AlexNet 508 | 9 8 0.95 0.93

As observed, all the models tested have both performance metrics above 90%, showcasing that the-traged &N

models to accurately classify window profile types is possible. Overall, it has been shown that geometrical featuradilef the p
crosssection can be used to identify window profiles. For that purpose, among the models tested, Xception is the best performing
model with a micreaveraged F1 score and a maaxeraged F1 score of 0.98 and 0.99 respectively.

Profile measuring

Based ortop-view images of the waste area, image processing technigues are employed to measure the amount of profile waste
after a cut has been performed. In this context, as some window profile waste pieces have cutiegtee4bgle to facilitate

the weldingprocess (Martinez et al., 2020a), the reported waste length of each profile is its longer measurable distance. An
algorithm is developed to estimate the length of the window profile contained in the image in a sequential processimlescribed
detail below.

1) As this algorithm is dealing with geometric calculations to estimate the profile length, standard camera calibration is
required to mitigate the impact of lens distortion on the final measurements (Zhang, 2002).

2) A binary mask is created to focus on theedw profile by removing the background using Otsu's threshold filtering
(Otsu, 1979).

3) A median blurring filter § ¢ p is applied to reduce the impact of profile edges and background noise on the
measurement.

4) The boundaries of the profile shape inirgary image are retrieved using OpenCYV find contours simple approximation
mode.
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5) A rectangle is bound over the identified contour to simplify the contour shape to a length and width representable
element.

6) The reported waste profile length is assigned esathger side of the rectangular shape and the value is converted from
pixels to millimeters using Equation 9.

R S S W —

)

where (0 ) is the camera working distance (or thstance between the camera and the measured object) in millimgtejs, (
is the image width in pixelsp( ) is the camera sensor width in millimeters, a6 ( ) is the focal length in millimeters.
An illustration of the profile masuring process for a sample image is shown in Figure 9.

lwaste

Figure 9. Example of the measurement process for a window profile.

The proposed i mage processing approach t o meessarations: {f)aast e |
single waste profile is visible at once (as a result of the cutting process pafpeafides are cut one by one) which minimizes
possible noise due to additional elements in the field of view of the camera, and (2) as the sastenpés out of a saw, the
orientation of the profile is not constant, hence the algorithm to measure the waste piece cannot rely on the prdfde trienta
provide the correct measurement.

5. Test results and discussion

An experiment is undertaken withetlaim to validate the proposed system in a real scenario. The waste pieces come from a real
production setup in which the machine under study cuts severallstggtk profiles from each type mentioned in Section 3.3.

The waste pieces obtained for this esimental setup are extracted from four different MWA reports (one per profile type). Due

to confidentiality reasons, information provided bytethe i
in the production lineannotbe repoted. The experimental setup, then, will solely focus on the information that is required to
test and validate the proposed system. Table 3 summarizes the information regarding the number and type of wasteedieces studi
a total of 55 waste pieces are used

Table 3. Summary of the waste pieces information used in the experimental setup.

Profile Type | Number of Profiles | Length Range [mm] | Average Length [mm]
402867 12 [83,116] 94.83
402861 17 [81,131] 100.94
479200 14 [82,114] 93.07
420697 12 [82,127] 95.00
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