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Highlights

Enhancing Resilience in Construction Against Infectious Diseases Using Stochastic Multi-Agent Approach

Nima Gerami Seresht

� Predictive models needed to enhance the resilience of construction against diseases.

� A framework developed for modeling the spread of infectious diseases in projects.

� Infectious diseases impact construction projects harder than general population.

� COVID-19 disease causes projects’ time/cost increase due to projects’ sta� absence.

� Wearing face masks can significantly reduce the adverse impacts of COVID-19.
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Abstract

To recover from the adverse impacts of COVID-19 on construction and to avoid further losses to the industry in future
pandemics, the resilience of construction industry needs to be enhanced against infectious diseases. Currently, there
is a gap for modeling frameworks to simulate the spread of infectious diseases in construction projects at micro-level
and to test interventions’ e�ectiveness for data-informed decision-making. Here, this gap is addressed by developing a
simulation framework using stochastic agent-based modeling, which enables construction researchers and practition-
ers to simulate and limit the spread of infectious diseases in construction projects. This is specifically important, since
the results of a building project case-study reveals that, in comparison to the general population, infectious diseases
may spread faster among construction workers and fatalities can be significantly higher. The proposed framework
motivates future research on micro-level modeling of infectious diseases and e�orts for intervening the spread of
diseases in construction projects.

Keywords: Infectious diseases, COVID-19, resilience, risk management, agent-based modelling, Monte Carlo
simulation

1. Introduction1

The outbreak of COVID-19 forced several governments around the world to impose various restrictions, such2

as mobility restrictions, socio-economic restrictions, and physical distancing regulations, in order to limit the spread3

of the disease [1]. Despite the positive impacts of these restrictions on the spread of COVID-19, they have caused4

immense losses to several industries, including manufacturing, hospitality, and construction [2, 3, 4]. Specifically,5

construction industry has been severely a�ected by the imposing of social distancing measures, since the execu-6

tion of construction projects highly relies on the physical interactions between project team members (e.g., labours,7

equipment operator, engineers). Moreover, despite the stringent restrictions imposed [5] and their consequent losses,8

previous research confirm that the construction industry have experienced the highest rate of COVID-19 infections9

among several other industries, including healthcare, manufacturing, and transportation, with five times of the chance10

of hospitalization as compared to the average of other industries [6, 7]. This might be caused due to the unique charac-11

teristics of construction projects, in which project team members commonly work in crews — rather than individually12

— and tasks are often executed in contained spaces. It should be noted that the temporary or permanent absence of13

the skilled workforce (i.e., absence or fatality) caused by COVID-19 infections has an additional adverse impact on14

the performance of construction projects.15

To recover from the aforementioned losses, the construction research community and economists are focused on16

assessing these adverse impacts and developing recovery plans for construction industry. This can be only achieved17

by developing accurate predictive models to forecast the spread of COVID-19 in construction projects, then, deter-18

mining its adverse impacts on the projects’ performance [8, 9], and finally, evaluate di�erent interventions to contain19

the spread of the disease [10]. The development of such predictive model can ultimately help with enhancing the20

resilience of construction industry against infectious diseases in future pandemics. This paper responds to this need21

by introducing a novel stochastic multi-agent framework to forecast the spread of infectious diseases in construction22

projects using agent-based modelling (ABM) and Monte Carlo simulation (MCS). The applicability of the proposed23

framework is tested by simulating the spread of COVID-19 in a case study of a residential building project, and then,24

by assessing the e�ectiveness of using face masks for containing the spread of the disease. Although there are several25
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interventions suggested for containing the spread of COVID-19, this paper only evaluates the e�ectiveness of face26

masks, since (1) using face masks is one of the most common interventions during the COVID-19 pandemic due to its27

low cost and high e�ectiveness; and (2) evaluating the e�ectiveness of other interventions, such as vaccination, venti-28

lation, testing, and shift changes, is associated with several modelling complexities and requires additional modelling29

e�orts, which will be addressed in a future research. This paper evaluates the e�ectiveness of using face masks as30

an attempt to illustrates the framework’s applicability for testing intervention strategies and to validate the model by31

running parameter sensitivity analysis.32

In previous research, several e�orts have been made to model the spread of COVID-19 and the e�ectiveness of33

di�erent interventions in large-scale social environments — called macro-level models hereafter — [8, 11, 12, 13, 10].34

The majority of these studies used ABM due to its unique capabilities for simulating the behavior of individual agents35

within a complex system of interacting agents and determining the global behaviour of the system as an aggregation of36

these interactions [14, 15, 16]. These macro-level models though, cannot accurately predict the spread of COVID-1937

in construction projects, since these models often have a large modelling scope and low level of details for their agents’38

definition. In other words, the macro-level models can model the spread of disease in large geographical areas but, for39

the cost of losing details on individual agents and considering a population of people as one agent in the model. Addi-40

tionally, the unique characteristics of construction projects reduces the accuracy of these generic macro-level models41

for their application in construction projects, since in construction, site specifications and crews’ characteristics can42

significantly a�ect the spread of infectious diseases. Accordingly, to accurately simulate the spread of infectious43

diseases in small social environments, such as construction projects, the ABM model need to capture the dynamic in-44

teractions made between individual humans within the model. These models are called micro-level models, hereafter.45

The few existing micro-level models developed for modelling the spread of COVID-19 [9, 17] used deterministic46

ABM, which can be challenged by the random behaviour of infectious diseases. In fact, the spread of infectious dis-47

eases is extremely random, since it starts by a random set of infected agents and continues by the random movements48

of agents within the system [18]. This random behaviour is confirmed by the literature and several quantitative tech-49

niques were suggested to address it, such as Monte Carlo simulation (MCS) [18], probabilistic approaches [19], and50

Bayesian modelling [20]. However, these studies solely use statistical/probabilistic approaches and fail to capture the51

dynamic interactions between people, which may only be captured by the application of ABM [9, 10]. Thus, there is52

a research gap for a modelling framework that simultaneously captures the random behaviour of infectious diseases,53

as well as the dynamic interactions between humans at micro-level. This research gap is addressed in this paper by54

combining ABM with MCS in a novel stochastic multi-agent framework, where the ABM component captures the55

dynamic interactions between humans at micro-level and MCS addresses the random behaviour of infectious diseases.56

Moreover, to enhance the usability of the proposed framework in future applications, the user is provided with the57

flexibility to alter the projects’ site specifications, crews’ specification, and disease specifications to allow modelling58

the spread of various infectious diseases in several settings of construction projects. The contributions of this paper59

are three-folds: (1) introducing a novel micro-level stochastic multi-agent framework — programmed in Pythonfi —60

for modelling the spread of infectious diseases in construction projects; (2) modelling the spread of COVID-19 in a61

case study project and quantifying the adverse impacts of this disease on construction projects and compare them to62

general population; and (3) providing means to enhance the resilience of construction industry against the spread of63

infectious diseases by providing a platform to assess the e�ectiveness of di�erent interventions.64

The remainder of this paper is organized as follows. Section 2 presents a brief literature review on the impacts of65

COVID-19 on the construction industry and the research conducted on modelling the spread of infectious diseases.66

Section 3 introduces the proposed stochastic multi-agent framework and illustrates its spatiotemporal structure; then,67

Section 4 presents a case-study by modelling the spread of COVID-19 in a residential building project, evaluates the68

e�ectiveness of using face masks, and validates the proposed framework through multiple behavioural tests. Finally,69

Section 5 discusses the conclusions of this research, identifies its limitations and introduces the future extensions to70

the current study.71

2. Literature Review72

2.1. The Impacts of COVID-19 on the Construction Industry73

While the outbreak of COVID-19 has left several impacts on construction industry, the construction research74

community initiated extensive e�orts on analyzing, forecasting, and minimizing these adverse impacts from the very75
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start of pandemic. Kamal [21] identified two types of disruptions in various industries, which were caused due to the76

rise of COVID-19: (1) the transformational disruptions, which occurs by adopting the new technologies introduced77

for dealing with the pandemic-related restrictions; and (2) hostile disruptions that were unexpected disruptions caused78

by the external sources. Alsharef et al. [22] have conducted interviews with 18 experts to identify the early impacts79

of COVID-19 construction industry in the United States (US) as well as the new opportunities created by the rise of80

COVID-19. Alsharef et al. [22] identified several adverse impacts of the pandemic on construction projects, including81

delayed material delivery, material price escalation, and reduced construction productivity. Their study also identified82

reduced transportation times and facilitated recruitment of skilled human-resources as the opportunities created by83

COVID-19 in the US. In another e�ort Jones et al. [2] identified several positive impacts of COVID-19 pandemic84

on construction industry, including improved housekeeping and tidiness of construction sites, improved planning,85

and reduced site congestion. Jones et al.[2] also identified the causes of these positive impacts as, (1) improved and86

more detailed task planning; (2) lower site congestion due to the reduced number of sta� on-site; (3) avoiding double87

handling of material; (4) avoiding personal time [23] during the delivery of project tasks; (5) more streamlined worker88

flow; and (6) improved crew motivation. This brief review of the literature confirms the significance of COVID-89

19 impacts on the construction industry and reveals the need for an accurate assessment of such impacts for proper90

planning of the industry’s recovery.91

A study by Bsisu [24] shows that the majority of experts in Jordanian construction industry believe that the92

COVID-19 pandemic caused no transformational disruptions on their productivity (i.e., 68.3% believed that remote93

work settings had no impact on their productivity or even improved their productivity). Accordingly, the majority of94

the negative impacts imposed to the construction industry by COVID-19, are hostile disruptions rather than transfor-95

mational ones [21]. To address these hostile disruptions by reducing the spread of COVID-19, the main challenges96

that construction practitioners dealt with are identified as sanitation of construction material, sharing construction97

tools and equipment, lack of compliance, and poor quality of personal protective equipment (PPE) [25]. Moreover,98

Simpeh and Amoah [5] have identified the main interventions for limiting the spread of COVID-19 as social dis-99

tancing, housekeeping and sanitation, screening, use of PPE, creating awareness, restricting site access, handling of100

deliverable, and improving compliance. In a recent study in Ghana, Amoah et al. [25] found that COVID-19 have101

severely a�ected small construction firms by reducing their productivity, a�ecting their projects’ cash flows and site102

management. In another e�ort [26] compared the impact of COVID-19 pandemics on the construction site-works and103

o�ce-works, and consequently, identified the major causes of disruption to the performance of construction firms and104

suggested corrective actions to combat these cases. Although the identification of these positive and negative impacts105

is an essential step to plan for the recovery of the industry, developing predictive models to numerically analyze these106

adverse impacts and simulate the e�ectiveness of di�erent recovery plans is also a critical step, which has not been107

fully addressed yet. This paper aims to address this research gap by introducing a hybrid ABM-MCS framework for108

modelling the spread of infectious diseases in construction projects using Pythonfi programming language.109

2.2. Modelling the Spread and Impacts of COVID-19110

Since the outbreak of COVID-19, several studies attempted to model the di�erent aspects of the pandemic, in-111

cluding the prediction of its infection patterns [27], forecasting its adverse impacts [8], and predicting the e�ect of112

interventions on the spread of the disease [10]. Di�erent methodologies are used for the development of these pre-113

dictive models, depending on the modelling contexts, scope, and objective variables. Truong and Truong [27] used114

statistical methods and time series analysis to forecast the travel patterns of US citizens at the national level and de-115

termined the rates of infections in the US. Similarly, Marmarelis [28] used statistical time series analysis and Riccati116

model to forecast the spread of COVID-19 in the US. In another e�ort, Xie [18] used MCS to model the spread of117

COVID-19 in the UK and Australia, while considering the probabilistic uncertainties that a�ect the spread of this dis-118

ease. The statistical methods and MCS allows the modellers to capture the probabilistic uncertainties associated with119

the spread of COVID-19 and enables them to forecast the spread of COVID-19 in large geographical area with large120

population size [18, 28, 29, 30] (called macro-level models hereafter). However, the application of these techniques121

are not suitable for simulating the spread of the disease in small areas with small number of occupants, such as those122

exits in construction projects, where the spread of diseases is being modelled in smaller scope with higher levels of123

details. Hereafter in this paper, these models are called micro-level models.124

For modelling the spread of infectious diseases at micro-level, ABM is an appropriate technique, since it allows the125

user to model the detailed behavioral characteristics of individual agents (e.g., project team members) and the disease;126
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and then, the ABM technique determines the spread of the disease based on the several interactions of the agents [14].127

Additionally, the use of simulation techniques (including ABM), allows the user to test several strategies for limiting128

the spread of the disease (i.e., running what-if analysis) and determine the optimum strategies to contain the spread129

of diseases. Given the strengths of the ABM technique, it has been used by several researchers for modelling the130

spread of COVID-19 in di�erent contexts. One of the early e�orts was made by Kerr et al. [8], who developed an131

open-source ABM library in Python for simulating the spread of COVID-19 in open environments. Their ABM model132

is called Covasim [8] and has been used by several scholars to analyze the spread of COVID-19 in di�erent contexts133

and test di�erent interventions to curb its spread. Li and Giabbanelli [10] used Covasim [8]) to assess the e�ectiveness134

of two vaccination plans in the US. Contreras et al. [31] used Covasim to determine the challenges associated with the135

tracing and isolation of coronavirus patients and to determine an optimized intervention strategy to contain the spread136

of COVID-19. In another e�ort, Cuevas [11] developed a generic ABM model to analyze the spread of COVID-19 in137

facilities, such as universities, companies, and shops. Araya [9, 17] developed an ABM model to simulate the spread138

of COVID-19 in construction projects, though with some limitations due to its simplifying assumptions, where the139

spread of COVID-19 is modelled only by categorizing the agents into low, medium and high-risk groups and assuming140

random interactions between them. The ABM model developed by Araya [9, 17] lacks the human agent component141

for modelling individual construction workers and their behavioural patterns within the model and ignores several142

characteristics of projects’ site, crews and the disease. Consequently, it does not allow the modeller to run what-if143

analysis to optimize the preventive strategies for containing the spread of the disease. In another e�ort, Thneibat et144

al. [32] have implemented the ABM technique to model the impact of COVID-19 on the value management practices145

in construction projects. Their modelling e�orts provides an insight regarding the applicability of this technique for146

modelling the secondary impacts of COVID-19 pandemic however, it does not provide any information regarding the147

spread of the disease on construction sites.148

Although the generic ABM models [8, 11] are useful tools for simulating the spread of COVID-19 in di�erent149

environments, the simplifying assumptions made for the generalization of the models reduces their accuracy in the150

construction context. As an instance, the ABM model developed by Cuevas [11], ignores construction sites’ specifi-151

cations (e.g., site layout, warehouses) and assumes all agents constantly move within the model in random directions152

and work individually. However, in construction projects, projects teams usually work in crews, rather than individu-153

ally and commonly are static on the project site, where their tasks are being executed. Additionally, those models that154

solely rely on the ABM technique may produce inconsistent results with the real-world conditions, since the ABM155

technique is purely deterministic and lacks the capacity to capture the probabilistic behavior of the several factors that156

a�ect the spread of infectious diseases. These limitations are addressed in this paper by developing a context-specific157

ABM-MCS framework for simulating the spread of infectious diseases in construction projects, which allows the158

modeller to alter the project, crews and disease specifications and facilitates the implementation of what-if analyses.159

3. The Stochastic Multi-Agent Framework For Infectious Diseases in Construction160

The proposed stochastic multi-agent framework has two major components: the ABM, and the MCS component.161

The architecture and building blocks of the proposed framework, and the data flow between its di�erent elements are162

presented in Figure 1.163

As shown in Figure 1, there is a constant interaction between the two components of the framework, where the164

ABM component simulates the specifications of the project, crews, and disease; and the MCS component captures the165

probabilistic uncertainty of the system behavior. The two components of the model are illustrated in further details in166

the following sub-sections.167

3.1. The Agent-Based Modelling Component168

As discussed in Section 1, ABM is a simulation technique with the capability to predict the aggregated behaviour169

of real-world systems, based on the behaviour of their individual elements and the interactions among them [16].170

Accordingly, the main steps of modelling real-world systems with the ABM technique are: (1) definition of the agents171

of the model; and (2) defining the scope of the system. The macro- and micro-level ABM models of COVID-19172

can be distinguished based on these two main modelling practices, where in the macro-level models [8], agents often173

represent a community or a population of people and the in micro-level models [9], agents often represent one person.174
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Figure 1: The architecture of the proposed stochastic multi-agent framework and its data flow diagram

Furthermore, the scopes of the macro- and micro-level models are di�erent, where the macro-level models often have a175

large system scope (e.g., modelling the spread of a disease in a large geographical area with large population size), and176

the scope of micro-level models is often limited to a small population of people. As the result, the micro-level models177

can more accurately — as compared to the macro-level models — simulate the behaviour of each person within the178

system, though this capability comes with significant additional computational cost [33] and makes them inapplicable179

to large systems. Considering the small scope of the system that the proposed framework captures (i.e., the team180

members of a construction project), the ABM component is defined at micro-level and represents each individual181

member of the project team as an agent in the simulation model. Moreover, the scope of system being modelled is182

limited to a given project and its team members, meaning the boundaries of the system is limited to the construction183

project’s site only and the movements and/or interactions of the agents outside the project site are not captured. Once184

the definition of the system agents and system scope are set, the inputs of the ABM component need to be specified185

by the modeller. The inputs of the ABM component (i.e., project site specifications, project team specifications, and186

disease specifications) gives this framework enough flexibility to model the spread of di�erent infectious diseases in187

a variety projects’ settings. The details of these inputs are illustrated in the three following sub-sections as the proper188

references are provided in Figure 1.189
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3.1.1. Project Site Specifications190

� Project site size: The proposed framework assumes a rectangular shape for the project site and using this191

parameter, the modeller can set the width and height of the rectangular project site. Once the size is set, the192

framework develops the spatial model of the project site, in which each grid cell has the width and the height193

equal to the disease transmission range (RT ) (see Section 3.1.3).194

� Site warehouse location: This parameter specifies the project warehouse location, where the construction ma-195

terial and tools/equipment are stored. Earlier research reveal that the sites’ warehouses are one of the hotspots196

for the transmission of infectious diseases, since site warehouses are usually crowded.197

� Daily work-hours: Specifies the number work-hours per day.198

3.1.2. Project Team Specifications199

� Crews specifications: The proposed framework assumes that all project team members work in crews and it is200

also assumed that all crews are of the same size. The modeller can specify the the size of each crew and the201

overall project team size. This parameter can improve the accuracy of the proposed framework, as compared202

to the existing ABM models [9, 17], which ignore the existence of crews in construction projects. Notably,203

working in crews is one of those characteristics that causes a higher rate of transmissions in construction as204

compared to the other industries [7].205

� Probabilistic task decider: In the proposed framework, project team members (i.e., agents) may randomly take206

one of the three following actions at each simulation time-step: (I) working directly on the task in-hand (i.e.,207

direct-work); (II) travelling to/from the site warehouse (i.e., traveling); or (III) doing personal travels on the208

site, such as using site facilities or hanging out with co-workers (i.e., personal). The probability of taking each209

action is specified by the modeller prior to the simulation run. The default values for this parameter are selected210

based on the research conducted by Tsehayae and Fayek [23] as follows: the probability of direct-work = 85%;211

traveling = 5%; and personal = 10%.212

3.1.3. Disease Specifications213

� Infection rate: This parameter specifies the ratio of the project team members who are infected with the virus214

at the start of the project. The value of this parameter can be subjectively chosen by the modeller or can be set215

equal to the average infection rate of the general population, within which the project is being executed. In the216

case study presented in Section 4, the infection rate of COVID-19 is set to 5% according to the data provided217

by the Canadian Government at their weekly epidemiological report [34].218

� General transmission chance (PT ): This parameter specifies the chance of infection transmission in a direct219

interaction between an infected and a healthy agent. The value of transmission chance maybe selected depend-220

ing on several factors, including the disease, the specifications of the virus, and the mode of transmission. In221

the case of COVID-19, there are three modes of infection transmissions, (1) fomite transmission that refers to222

the transmissions caused by contacting contaminated surfaces; (2) droplet transmission, which is caused by the223

large repository droplets that carry the virus and are exhaled by the infected person through coughing, sneezing,224

breathing or speaking; and (3) aerosol transmission, which is caused by the small exhaled respiratory droplets225

that carry the virus [35, 36, 37]. The proposed framework in this paper only takes account for the droplet226

transmission of the disease (i.e., COVID-19), since the rate of fomite transmission depends on several factors227

(e.g., housekeeping, sanitation, level of tools sharing among the crew) and may not be accurately selected and228

modelling the aerosol transmission is associated with several modelling complexities, which will be addressed229

in future research. In the proposed framework, the default value of general transmission chance — assuming230

the transmission of COVID-19 is being modelled — is set to 10% based on the available research data [38].231

Pt(aijah) = fP(ai jah) � PT (1)

where Pt(aijah) stands for the probability of disease transmission between an infected agent ai and a healthy232

agent ah; and fP is the proximity function that is presented in Equation 2.233

6



� Transmission range (RT ): Specifies the maximum distance between two individuals, where the infection can be234

transmitted from the infected to the healthy individual. The value of transmission range is used for defining the235

proximity function as shown in Equation 2.236

fP(a jjak) =

0 if D(a jjak) > RT

1 if D(a jjak) � RT
(2)

where the D(a jjak) stands for the distance between agent j and k; and Tr represents the transmission range of237

the disease. The default value for the transmission range is 2m according to the guidelines provided for the238

COVID-19 pandemic [39].239

� Healing period: Using this parameter, the modeller specifies the number days each infected individual needs240

for the recovery from the disease. The default value for this parameter is 14 days, assuming the spread of241

COVID-19 is being simulated [40].242

� Mortality rate: This parameter specifies the ratio of the fatal cases of the diseases to the total number of infec-243

tions. The default value for this parameter is 2% based on the statistics reported by WHO [41], assuming the244

spread of COVID-19 is being simulated.245

� Reinfection chance (PRI): One of the main characteristics of infectious diseases is the immunity developed by246

the patients’ body in post-recovery conditions and as a result, the chance reinfection is usually less the first time247

infection. In other words, once an individual is infected by a disease and healed completely, the chance of being248

infected by the same disease for the second time is less than the first time infection. This phenomenon causes249

herd immunity [39, 11], where the mass population in a community develop immunity against an infectious250

disease through previous infections and the spread of the diseases stops. Herd immunity have stopped the251

spread of several infectious diseases in the history of epidemiology and is important factor modelling the spread252

of infectious diseases for the sake modelling accuracy. The reduced chance of reinfection may not be considered253

in macro-level models of COVID-19 accurately, since the individual people are not traced in these models.254

Conversely, in micro-level models, the simulation model tracks the individual people throughout the simulation255

run, thus, the reduced chance of reinfection may be accurately considered. Capturing the reduced chance256

of reinfection enables the micro-level models to simulate the phenomenon of herd immunity, as well as the257

assessing the e�ectiveness of vaccination on the spread of infectious diseases. However, the existing ABM258

models [9, 17, 10] failed to capture this phenomenon. The proposed framework allows the modeller to consider259

the reduced chance of reinfection using this parameter. The default value for the chance of reinfection —260

assuming the transmission of COVID-19 is being modelled — is set to 2% based on the findings of the research261

conducted by Cavanaugh et al. [42].262

Pr
t (aijah) = Pt(aijah) � PRI (3)

where Pr
t (aijah) stands for the re-infection chance — of an agent recovered from the disease ah —, who was in263

a direct contact with an infected agent ai; and Pt(aijah) is the general transmission chance that was previously264

defined in Equation 1265

� Infection states: The di�erent states of an infectious disease and their duration are e�ective parameters for266

simulating its spread. Generally, there are three main states for infectious diseases: (I) the non-contagious267

asymptomatic state that refers to the period that the infected individual has not developed any symptoms yet268

and cannot transmit the disease; (II) the contagious asymptomatic state that refers to the period that the in-269

fected individual has not developed any symptoms yet but, can transmit the disease; and (III) the contagious270

symptomatic state refers to the period that the infected individual has developed symptoms and can transmit the271

disease. Ignoring the existence of these three states for modelling the spread of infectious disease, leads to un-272

realistic simulation results by either overestimating or underestimating their spread. In the real-world scenario,273

the spread of infectious diseases often occurs during the contagious asymptomatic state, since the infected in-274

dividuals are not aware of their infections yet and freely interacts with other individuals. However, the existing275
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micro-level ABM models [9, 10, 17] assume that the infected individuals transmit the disease throughout their276

infection period, an assumption that may lead to significant overestimation of simulation results. The proposed277

framework considers the three di�erent states of infection and the default duration for each state is selected278

by assuming the spread of COVID-19 is being modelled and based on the findings of the research conducted279

by Shamil et al. [40] (see Figure 2). In the case of COVID-19 infections, there are rare cases reported, in280

which the infected individual does not develop any symptoms throughout the infection period and stays in the281

asymptomatic state (i.e., contagious, or non-contagious) for the whole duration of infection [43]. However, due282

to the rarity of these cases and the lack of numerical and statistical evidence on them, the proposed framework283

ignores these cases and assumes all the infected people pass through the same three infection states presented284

in Figure 2. However, the proposed framework and its associated Pythonfi library provides enough flexibility285

for modellers to take these rare cases into account in future modelling e�orts.286

Healthy
Non-Contagious 

Asymptomatic
Infection

Contagious 

Asymptomatic

Contagious 

Symptomatic

Random 

Mortality Test?
Isolation

Healed

Remove Agent

Deceased

4 Days

2 Days

8 Days

Figure 2: The infection states and their default duration in the proposed framework

3.1.4. The Spatiotemporal Structure of the Agent-Based Modelling Component287

Once the inputs of the ABM component are set, the proposed framework develops a spatial model of the project288

site based on the project site specifications given by the modeller (see Section 3.1.1), in which the width and the height289

of each grid cell is equal to the transmission range of the infectious disease RT (see Section 3.1.3). Then, the ABM290

component, models each individual member of the project team by an agent and randomly assigns them to di�erent291

crews (number and size of crews are specified by the modeller as discussed in Section 3.1.2). Finally, the workplace292

of each crew is randomly specified on the grid, assuming each grid cell can be occupied by an unlimited number of293

agents. To further illustrate the spatiotemporal structure of the ABM component, Figure 3 graphically presents the294

spatial model of a hypothetical construction project in the proposed framework.295

Once the simulation run starts, tasks undertaken by each individual agent at each simulation time-step is randomly296

selected based on the parameters of the probabilistic task decider given by the modeller (see Section 3.1.2). Referring297

to Figure 3, there are three potential tasks each agent may undertake at simulation each time step and its movement298

is specified accordingly: (1) if the agent works directly on the task in hand, it will be moved to its pre-specified299

crew location; (2) if the agent travels to the site warehouse, it will be moved toward the warehouse through the route300

with the shortest Manhathan distance [44]; and (3) if the agent takes personal time, it will be moved to one of its six301

neighbour cells randomly until the next simulation time step (see Figure 3). Further, those agents that travel to the site302

warehouse will not be assigned to any other tasks until after they arrive to the warehouse. At each simulation time303

step, once all agents’ tasks are decided and their new position are assigned, the infected agents will be located on the304

grid and their cell mates (i.e., those agents that share the same cell with them on the grid) will be randomly infected.305

The random infection occurs, where the chance of infection of a healthy agent with no previous infections is equal to306

the general transmission chance (see Section 3.1.3), and the chance of infection of a healthy infection with previous307

infection is equal to PT � PRI (see Equation 3). The pseudo code of the framework, which is presented in Figure308

4 illustrates the process of agents’ movements on the project site, as well as the process of infection transmission309

between the infected agents and their cell mates.310
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Figure 3: The spatiotemporal structure of the ABM component

1  for agent in model.agents:
2 if agent.task != 'warehouse_travel':
3 agent.task = agent.random_task_decider()
4 if agent.task = 'direct':
5 agent.pos = agent.work_loc
6 elif agent.task = 'personal':
7 agent.pos = agent.random_walk()
8 else:
9 agent.pos =agent.warehouse_travel()

10 
11 
12  for agent in model.agents:
13 
14 if agent.infection = True:
15 cell_mates = [a in model.agents if a.pos == agent.pos]
16 
17 for a in cell_mates:
18 
19 if a.infection == False and a.pre_infection == False:
20 if rand() <= transmission_chance:
21 a.infection == True
22 
23 elif a.infection == False and a.pre_infection == True:
24 if rand() <= transmission_chance * reinfection_chance:
25 a.infection == True
26 
27 elif a.infection == True:
28 pass
29 else:
30 pass
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Figure 4: The pseudo code of the ABM component for agents’ positioning and infection’s transmission
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The pseudo code presented in Figure 4 is executed at each simulation time-step and once the predetermined time311

horizon of simulation is reached, the ABM component ends the simulation run and delivers the results to the MCS312

component. In each simulation run, the ABM component records the number agents at each infection state (recorded313

for at each simulation time-step), the location of each agent on the project site (recorded on a heat-map of the site),314

and the number of deceased individuals at each simulation time-step. It also records the infection log that includes the315

time and location of each occurrence of infection transmission, which assists with the identification of transmission’s316

hot-spots and optimization of the site layout.317

3.2. The Monte Carlo Simulation Component318

The proposed framework captures the probabilistic uncertainties that a�ect the spread of infectious diseases by319

considering random behaviours of the system in six aspects. These random behaviours are modelled using pseudo320

random generator of NumPy library in Pythonfi, which generates random numbers at the start of each simulation run321

or simulation time-step.322

� Random external infections: This parameter determines the external infections by randomly selecting a pre-323

specified portion of agents (i.e., defined as infection rate) and changing their health state from healthy agents324

to the infected ones. This parameter simulate the start of the spread, where the first case(s) of infection enter325

the project’s site. The occurrence frequency of random external infections is determined by the modeller based326

on the number of factors, including the relationships of the project team with the general population, project327

location, whether the project team reside in project camps or not.328

� Random crew assignments: Prior to the project’s start, project team members are randomly assigned to a given329

number of crews (see Section 3.1.2) and do not change their crews until the end of the project. Notable, all the330

project crews are equal in size.331

� Random crew location: Once the crew assignments are completed, each crew is randomly located on project332

site and all its members are moved to the selected grid prior to the start of simulation.333

� Random task decider: At each simulation time-step (i.e., takes 1 minute long), this parameter randomly selects334

the task that each agent execute until the next simulation time-step. There three possible options (see Section335

3.1.2) for this parameter: direct-work, traveling, or personal tasks.336

� Random agent movements: At each simulation time-step, this parameter determines the direction of movement337

for those agents that travel on the site for personal reasons. Notable, those agents that travel to/from the ware-338

house do not move randomly nor instantly relocated to the warehouse, instead the framework identifies their339

shortest path to the warehouse location using Manhattan distance measure and simulates their travel through this340

path. This capability (i.e., travelling from the shortest distance) is incorporated into the proposed framework to341

determine if the corridors toward the site warehouses are hot-spots of infection transmission or not.342

� Random deaths: This parameter simulates the fatal cases of infections in the proposed framework by making343

a random decision regarding the death or recovery of each infected agent. This random decision will be made344

only once at the end of the symptomatic contagious state (see Figure 2). Ultimately, agents’ death is simulated345

by removing them from the ABM component for the rest of simulation run.346

After each simulation run, the MSC component saves the results produced by the ABM component in a Python347

dictionary (or as a serialized object) and resets the ABM component parameters and runs the simulation until the348

user-defined number of simulation runs is reached. Then, the MCS component runs basic statistical analyses on the349

simulation results and delivers the global results. Further details regarding the programming aspects of the proposed350

framework are provided in the model documentations on the framework’s Github page [45].351
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4. Construction Case-Study: Spread of COVID-19 in a Residential Building Project352

4.1. Simulating the Spread of COVID-19 in the Project without Interventions353

In this section, the applicability of the proposed framework is tested through its implementation on a construction354

case study, which simulates the spread of COVID-19 in a residential building project. Moreover, to assess the be-355

havioural validity of the proposed framework and test its application for developing strategies to contain the spread of356

infectious diseases, the e�ectiveness of using face masks is simulated in the case study project. Although the values357

for project site size, project team size, and crews’ specifications are selected hypothetically, these numbers are in-358

tended to mimic the real-world conditions based on several years of experience of the author in construction industry.359

Moreover, the main reference for the disease specifications — the most important parameters for accurate simulation360

results — are provided in Section 3.1.3. The details of the construction case study are provided in Table 1.361

Project Site Specification Project Team Specifications Disease Specifications

Description Value Description Value Description Value

Size of project site 45m � 25m Project team size 100 Transmission chance 10%

Warehouse count 1 Number of crews 25 Transmission range 2m

Warehouse location 22m � 12m Size of crews 4ppl Infection rate 5%

Project work-hours 12hrs Task decider [85%, 10%, 5%] Re-infection chance 1%

Time steps Minute Mortality rate 2%

Site residence Yes

Table 1: The specifications of the residential building case-study

Simulation of the current model is implemented using Python 3.8.9 on a desktop PC equipped with AMDfi Ryzen362

5 3600 CPU, 32 GB of RAM, and Nvidiafi GTX 1660 Super discrete graphics card. Each simulation run takes 16363

seconds and for stochastic analysis of the results, the MCS component ran the model for 100 times. At each simulation364

run, the ABM component has run the model for 93,600 time-steps, which denotes six months of project execution365

with 5 days/week and 12 hours of work per day.366

First, the number of fatal cases is analyzed and the histogram presented in Figure 5 shows the results for 100367

simulation runs. The average number of fatalities is 16:12 people and the standard deviation is 3:66, indicating that368

in a six months long project, 16% of project team members may lose their lives due to COVID-19 infections. This369

should be noted that the simulation model forecasts such a high rate of mortality among construction workers using370

the 2% mortality rate (see Section 3.1.3) given to the model based on empirical data that exists on general population371

[39] (see Section 3.1.3). In other words, the work behaviour in construction projects, which mandates the workers372

to work in crews rather than individually, causes several rebounds of infections among the project team members373

and increases the team’s exposure to the chance of fatality in multiple occasions. Accordingly, the simulation results374

reveals that the mortality rate of construction workers can be up to 8 times of the general population. Notably, this case375

study represents building construction projects, in which the project’s team work in confined space with no ventilation376

available. Although this is the common case in several building construction projects, the results produced in this case377

study cannot be generalized to the types of construction projects, which are executed in di�erent external conditions378

(e.g., open-air, working individually). However, the flexibility of the proposed framework allows the users to model379

the di�erent conditions that applies to the other types of construction projects and simulate the spread of COVID-19380

in those projects as well.381

The results presented in Figure 5 confirms that the spread of infectious diseases has a random behaviour, which382

may be best modelled by a probabilistic distributions. Moreover, the number of agents at each health state — in each383

simulation time step — is determined in this case study and the results are presented in Figure 6.384

The simulation results, shown in Figure 6, presents the average number of agents at each of the five health states385

(i.e., healthy, non-contagious asymptomatic, contagious asymptomatic, contagious symptomatic, and deceased) at386

each simulation time-step, in addition to the upper and lower limits of its 68:2% confidence interval. The upper and387

lower limits presented in Figure 6 stand for the daily average value plus and minus the standard deviation respectively388

(Lu = � + �, Ll = � � �). On the first note, simulation results shows that the daily average number of healthy389

agents is 32:15 people with a standard deviation of 11:40, which indicates that on a daily basis 67:85% (almost two390
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Figure 5: Fatalities caused by COVID-19 in the case study project using the simulation inputs presented in Table 1

third) of the project team members are a�ected by the COVID-19 infections. Furthermore, results reveal that a rapid391

spike of infections occur in the early stages of the project, where the number of healthy individuals rapidly drops to392

zero at the first few days of the project. Interestingly, following the initial spike of infections, the number of healthy393

individuals does not recover completely, which occurs due to the reinfection of the project team members. This means394

that reinfections still occur throughout the project life-cycle, even though, the chance of reinfection is only 2%. This395

phenomenon can be justified due to the close interactions of the project team members, since construction workers396

commonly work in crews.397

As previously discussed, the spread of infectious diseases can significantly a�ect the performance of projects398

by causing temporary or permanent absence of the workforce at the job-site. To further investigate this impact, the399

average daily number of agents, who are present on the job-site (i.e., all agents who are not at contagious symptomatic400

state or deceased), is analyzed in this case study and the results are presented in Figure 7. The simulation results shows401

that the average daily number of agents on-site is only 58:34 people and its standard deviation is 2:89. In other words,402

in the case study presented in this paper, the spread of COVID-19 can reduce the availability of human resources on403

the project site by 42%, which can cause significant increases to the project cost and time. Furthermore, as shown in404

Figure 7, the normal distribution fitted on the simulation results reveals that the number of workforce on the site is405

randomly changing on daily basis and this can further challenge the project controlling and planning practices due to406

the inaccuracy of the workforce availability forecasts.407

The proposed framework develops two types of heat-maps to support the site-layout planning practices with the408

objective of limiting the spread of infectious diseases. The first type of heat-map, shown in Figure 8(a), depicts the409

number of transmission occurrences in each grid cell of the project site, which is calculated cumulatively over the410

entire the simulation run. This type of heat-map helps to identify the hotspots of the disease transmission and to411

develop strategies to reduce the infection transmission in those locations. The second type of heat-map, shown in412

Figure 8(b), pictures the accumulative number of agents observed on each grid cell over a number of simulation time-413

steps. This type of heat-map allows the project planners to detect the locations with the highest level of footfall on the414

site and change the project site layout or crews’ work locations to avoid the generation of infection hotspots in those415

locations.416

Figure 8(a) shows the number of transmissions at each grid of the project site after six months of project execution417

in this case study. The results shows that the site warehouse location has the highest number of infection transmissions,418

followed by the several crews’ work locations. Accordingly, project site layout planning can play a key role for419

enhancing the resilience of construction projects against the spread of infectious diseases, since the site warehouses420

and crews’ work locations are the hotspots for disease transmission. Figure 8(b) shows the number of agents observed421

on each grid cell only after two days of project execution, which confirms the fact that the agents spent the majority of422

their time working in crews on their tasks; and routes to and from the site warehouse have experienced a higher than423

normal tra�c of the agents.424
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Figure 6: Simulation results for daily average number of agents at each state of health, using the simulation inputs presented in Table 1
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Figure 7: Average daily number of project team members on the job-site, using the simulation inputs presented in Table 1

4.2. Simulating the Effectiveness of Wearing Face Mask425

In addition to predicting the spread of infectious diseases in construction sites, the proposed framework allows426

modellers to evaluate the e�ectiveness of di�erent interventions on the spread of infectious diseases; and consequently,427

determine the optimal interventions to curb the spread. To test the application of the proposed framework in this428

capacity and investigate its parameter sensitivity for behavioural validation (see Section 4.3), the e�ectiveness of429

using face masks on preventing the spread of COVID-19 is simulated in the current case study. Several types of face430

masks have been suggested for limiting the spread of COVID-19 (e.g., surgical masks, N95, and 1 or 3 ply cloth431

masks), each of which have di�erent characteristics and di�erent levels of e�ectiveness in terms of reducing the rate432

of droplet and aerosol transmission modes [46]. In this case study, the use of surgical face masks are simulated, since433

they are one of the cheapest and most common types of face masks used during the COVID-19 pandemic [46]. To434

account for the e�ect of wearing surgical face masks in this case study, the general chance of transmission (PT ) is435

reduced from 10% to 1% according to [38] and the value of other parameters are unchanged, as presented in Table436

1. Then, the model ran for 100 simulation runs and the simulation results — hereafter referred as post-intervention437

simulation results — are statistically analysed. Figure 9 shows the post-intervention simulation results regarding the438

average number of agents at each of the five health states, as well as the 68:2% confidence interval of the results.439

The post-intervention simulation results shows significant improvements in terms of number of infections, as440

compared to the original simulation results presented in Figure 6. Following the implementation of this intervention,441

the daily average number of healthy agents (refer to Figure 9) is increased from 32:15 to 91:46 people and its standard442

deviation is only 1:47. This shows that the number of infections can be reduced by 87% ((67:85�8:54)=67:85 = 87%)443

by only mandating the use of face masks in the project’s site. The simulation results also reveal that the initial spike444

of infections still occurs in the project by infecting almost 50% of the project team members. However, the intensity445

of the initial spike is smaller in the post-intervention simulation results as compared to the original ones. Moreover, in446

the post-intervention simulation results, the spread of the disease slows down significantly, after the initial spike and447

the number of infected agents (i.e., non-contagious asymptomatic, contagious asymptomatic, contagious symptomatic,448

and deceased) tends toward zero (refer to Figure 9) over time. On another observation, the average number of deceased449

agents in the post-intervention results is only 1:89 person with the standard deviation of 1:35, which indicates that450

wearing face masks can reduce the number of fatalities in projects up to 88% ((16:12 � 1:89)=16:12 = 88%). Finally,451

in the post-intervention simulation results, the average daily number of agents in the project’s site — shown in Figure452

10 — is increased by 62%, with an average of 94:46 people, as compared to the 58:34 people in the original simulation453

results.454
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