A sensor with coating Pt/WO$_3$ powder with an Erbium-doped fiber amplifier to detect the hydrogen concentration

Jiandong Liu*, Liang Chu*, Bin Liu, Juan Liu, Yingying Hu, Xing-Dao He, Jinhui Yuan, Yangbo Zhou, Dejun Liu, Zabih Ghassemlooy, James Martin, Yong Qing Fu and Qiang Wu*

Abstract — A highly sensitive hydrogen sensor coated with Pt/WO$_3$ powder with an Erbium-doped fibre amplifier (EDFA) is proposed and experimentally demonstrated. The sensing head is constructed by splicing a short section of tapered small diameter coreless fiber (TSCDF diameter of 62.5 μm, and tapered to 14.5 μm) between two single-mode fibres. The Pt/WO$_3$ powder adheres to the surface of PDMS film coated on the TSCDF structure, which is sensitive to hydrogen. An EDFA is introduced into the sensor system to improve the quality factor of the output spectrum and thus improve the sensor’s resolution. As the hydrogen concentration varies from 0% to 1.44%, the measured maximum light intensity variation and the sensor’s sensitivity are -32.41 dB and -21.25 dB%/s, respectively. The sensor demonstrates good stability with the light intensity fluctuation of < 1.26 dB over a 30-minute duration.

Index Terms—Hydrogen sensor, Erbium-doped fiber amplifier, Pt/WO$_3$ powder, PDMS film.

I. Introduction

A major clean raw material and a special gas, hydrogen is widely used in petrochemical, electronic, metallurgical, food processing, float glass, fine organic synthesis industries among others. Additionally, as environmental protection has strengthened, hydrogen has become a perfect new energy source for the aerospace and automobile industries [1]. However, as early as 1990s, scientists observed the leaky nature of hydrogen, which is faster than other fuels or gases [2]. In addition, hydrogen is flammable explosive with a strong diffusibility. Therefore, the detection of low concentrations of hydrogen is essential to avoid the danger of explosion caused due to hydrogen leak during its production, storage, transportation, and usage. Hydrogen sensors (HSs) must meet few requirements including high sensitivity, rapid response/recovery, very good selectivity, and low detection limits. In the last decades, several types of HSs have been developed including surface acoustic [3], electrochemical and thermoelastic [4, 5], and optical [6]. Among these optical fiber-based HSs, which offer unique advantages including excellent safety, smaller size, low-cost, reusability, stable and highly accurate performance, improved sensitivity, reusable, and longer transmission range, thus making them an ideal solution in many hazardous applications [7-11]. There are several fiber optic-based HSs depending on their sensing structure, including fiber Bragg grating (FBG), fibre interference, surface plasmon resonance (SPR), etc. For example, Zhang et al proposed a hydrogen sensor based on a tilted fiber Bragg grating coated with PDMS/VO$_2$ powder with a sensitivity of 0.596 dB%/s for hydrogen concentrations of 0 to 1.53% [12]. Note that, the FBG-based hydrogen sensor has the

This work was supported by the Natural Science Foundation of Jiangxi Province (20212BAB202024 and 20192ACB20031); National Natural Science Foundation of China (NSFC) (11864025, 62175097, 62065013 and 62163029); Nanchang Hangkong University graduate student innovation special fund project (Grant No. YC2021-073).

Corresponding authors: Bin Liu and Qiang Wu.

Jinhui Yuan is with the Research Center for Convergence Networks and Ubiquitous Services, University of Science & Technology Beijing, Beijing 100083, China.

Yangbo Zhou is with Nanchang University, Sch Mat Sci & Engn, Jiangxi Engn Lab Adv Funct Thin Films, Jiangxi Key Lab Two Dimens Mat, Nanchang 330031, Jiangxi, Peoples R China. (e-mail: yangbozhou@nchu.edu.cn).

Dejun Liu is Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen, 518060, China (e-mail: dejunliu1990@gmail.com).

Zabih Ghassemlooy, James Martin, and Yong Qing Fu are with Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.

Liang Chu is Institute of Carbon Neutrality and New Energy & School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China (e-mail: chuliang@hdu.edu.cn).

advantage of distributed measurement, but of lower sensitivity
[13-15]. SPR fiber-based HSs have offer higher sensitivity and
fast detection but at higher cost and complex production process,
which limits their practical applications [16-18]. By contrast,
interference-based HSs have gained more research attention
because they are simple to fabricate and perform better.
Interferometric fiber sensors can be divided into three
categories of Mach–Zehnder interferometric (MZI) [19-25],
Fabry-Perot (F-P) interferometer [26], and Sagnac
interferometer [27, 28].

The principle of optical fibre hydrogen sensor is based on
coating a thin layer of hydrogen sensitive material onto the
surface of the fibre sensor. The hydrogen-sensitive material will
change properties thus resulting in a change in sensor signal.
The most commonly used hydrogen sensitive materials are Pd
and WO₃. While Pd has good selectivity, its hydrogen
embrittlement prevents its adhesion to optical fibres [1].
Whereas WO₃ adhered well but lacks selectivity and sensitivity
to hydrogen [29]. Therefore, to improve the gas sensitivity of
WO₃ precious metals are often added as catalysts [30]. Many
papers have reported on the effect of Pt loading on the sensing
properties of WO₃. For example, in 2013 Dai et al proposed an
optical fibre hydrogen sensor by depositing Pt/WO₃ onto FBG,
which achieved a wavelength shift Δλ of up to 536 pm at
hydrogen concentration of 10,000 ppm [31]. In 2018, Li et al
proposed a dual C-cavity optical fibre hydrogen sensor based
on Pt/WO₃ with the hydrogen sensitivity of -15.14 nm/% over
the hydrogen concentration range of 0-1 % [32].

In this paper, Pt/WO₃ is used as hydrogen sensitive material.
The sensing head is constructed by splicing a short section of
tapered small diameter coreless fibre (TSDCF) between two
single-mode fibres (SMFs). A hydrogen sensitive layer is
formed on the TSDCF interference structure when Pt/WO₃
powder adheres to the surface of PDMS film coated on the
TSDCF structure. The hydrogen sensitive layer undergoes an
oxidation-reduction reaction and release heat when exposed to
hydrogen, thus changing the effective refractive index of the
surface of the TSDCF structure, which results in Δλ or the
variation of light intensity. The proposed sensor system is based
on intensity modulation, which can have potential low cost
solution by simply using photodetector to demodulate the signal.
In addition, an erbium-doped fibre amplifier (EDFA) is
integrated into the sensing system, which not only provides a
narrow full width at half maximum, but also amplify the signal
variations and thus has higher sensitivity.

\[
\text{Figure 1. The TSDCF structure diagram.}
\]

II. EXPERIMENTAL DETAILS

A. Materials

- **Synthesis of Pt/WO₃:** Pt/WO₃ powder (synthesized by
 Hangzhou Dianzi University, China) is used as a hydrogen
 sensitive material to react with hydrogen, which has Pt:W
 molar ratio of 1:5. The polymer precursor (Sylgard 184A) and
 curing agent (Sylgard 184B) are also used.
- **PDMS:** To obtain PDMS film, the polymer precursor and
 curing agent were mixed in a 5:1 ratio and stirred for 5 minutes
 using a magnetic stirrer at 2000 rpm.

B. Production of sensing head

- **TSDCF fabrication:** The sensor head is made by coating the
 surface of TSDCF with hydrogen sensitive material. Fig. 1
 shows a structure diagram of the TSDCF. First, a commercial
 fusion splicer (Fujikura 80C) is used to fusion splice a short
 section of small diameter coreless fibre (CL-1010-C) between
 two SMFs (G652D). Second, the small diameter coreless fiber
 is tapered by a commercial optical coupler manufacturing
 system (OC-2010, JILONG) with a taper waist diameter
 varying from 62.5 to 14.5 μm.
- **Pt/WO₃ coating:** Fig. 2 shows a schematic diagram of the
 procedure of coating hydrogen sensitive material Pt/WO₃. This
 includes two steps: 1) pour the non-solidified PDMS into the
 mold with the cleaned TSDCF in place to form a layer of PDMS
 film on the surface of TSDCF. The thickness of PDMS film is
 about 1 μm. 2) PDMS, a transparent flexible material, can
 firmly adhere Pt/WO₃ to the surface of optical fiber. Finally,
 Pt/WO₃ powder is adhered to TSDCF coated with PDMS film
 using a translation stage and then cured at 60°C for 4 h.

\[
\text{Figure 2. TSDCF structure surface hydrogen sensitive layer}
\]

\[
\text{production process.}
\]
Figs. 3(a) and (b) is the SEM image of TSDCF structure and the SEM image of the sensor head coated with Pt/WO₃, respectively. It is observed that the Pt/WO₃ composite film on the fiber surface is porous and rough, which is suitable for hydrogen absorption and desorption. Figs. 3(c) and (d) show the elements and specific proportions contained in the hydrogen sensitive layer. The oxidation-reduction reaction between hydrogen sensitive layer of Pt/WO₃ and hydrogen can be described by the following equations [33,34]:

\[
WO_3 + xH_2 \rightarrow WO_{3-x} + xH_2O
\] (1)

\[
WO_{3-x} + \frac{x}{2}O_2 \rightarrow WO_3
\] (2)

III. PRINCIPLES AND SYSTEM

When light is injected via the SMF into the TSDCF, multiple modes interference will be stimulated, which will interact with the surrounding medium via the evanescent field. A minor change in the surrounding medium will affect the output of the TSDCF, resulting in variation of the light intensity and wavelength shift. For the hydrogen sensor, due to the coating of Pt/WO₃, oxidation-reduction reaction will occur when it contacts with hydrogen, which will introduce the change of light intensity and wavelength shift at the output of the sensor. In order to eliminate the difficulty of multi-band transmission spectrum analysis of hydrogen sensor and improve its resolution, an EDFA (EDFA-PA-45-6) is introduced, which is connected to a polarization controller (PC) to adjust the polarization state of light, see Fig. 4. A polarization independent isolator (PI-ISO) and a sensing head, which is located in a gas chamber, are used. The output of the sensing head is connected to a 90:10 optical coupler (OC, WIC-1X2-1550-10/90-0-A40), with the 90 and 10 % output ports are connected to an EDFA and an optical spectrum analyzer (OSA, Anritsu, MS9710C), respectively. The experimental testbed of the proposed hydrogen sensor system is shown in Fig. 4. The sensing head is placed in the gas chamber, and the hydrogen and the nitrogen are controlled by the flow controller (KT-C4Z) to ensure the correct level of hydrogen concentration injected into the gas chamber. Hydrogen generation is provided by hydrogen generator (HP-H300). Nitrogen is stored in the nitrogen tank.
EDFA is introduced into the sensor to obtain single-wavelength transmission spectra with high quality factors (Q-factor). Fig. 5(a) shows the comparison of transmission spectra before and after the introduction of EDFA, where the red and black curves represent the transmission spectra before and after the introduction of EDFA, respectively. The optical signal-to-noise ratio (OSNR) and full width at half maximum (FWHM) of transmission spectrum change from 3.78 dB and 2.1 nm to 32.45 dB and 0.12 nm, respectively. The quality factors (Q-factor) can be calculated as follows [26]:

\[Q = \frac{\lambda}{FWHM} \]

Where \(\lambda \) is the resonant wavelength. After the introduction of EDFA, the Q-factor of the transmission spectrum of the sensor is increased by 17.5 times compared to that without EDFA.

The hydrogen concentration is measured as follow: (i) the sensing head is placed in the gas chamber; (ii) nitrogen at a flow rate of 200 ml/min is used to discharge the air within the chamber; and (iii) after all the gas in the chamber is removed by nitrogen, the hydrogen is applied to the air chamber and its flow rate is controlled at 10 ml/min. Note, a flow controller unit is used to control the concentration of both nitrogen and hydrogen within the gas chamber.

Fig. 5(b) shows the spectral response of the hydrogen sensor for different concentration rates. As can be seen from Fig. 5(b), the light intensity at the peak wavelength of 1564 nm decreases from -32.41 to -61.9 dBm when the hydrogen concentration increases from 0 to 1.44 %. When the hydrogen concentration reaches 1.44 %, the OSNR of the output spectrum tends to zero. Even if the hydrogen concentration is further increased, the intensity of the output spectrum does not change significantly.

Fig. 5(c) depicts the light intensity as a function of hydrogen concentration. Note, the rate of change of the proposed hydrogen sensor is ~ 21.25 dB/%, which is significantly higher than 0.596 dB/% for the WO\(_3\) powder coated long period fiber optic fiber reported in [12]. The summary of resulted reported on hydrogen sensors together with the proposed system is outlined in Table 1. Compared with other papers [12] and [35], using same intensity demodulation method, the proposed sensor has achieved higher sensitivity with an order of magnitude improvement. This is possibly due to: 1) the proposed TSDCF structure has very high sensitivity to surrounding environmental changes, which acts as a transducer of the hydrogen sensor; 2) the hydrogen sensitive material Pt/WO\(_3\) has a higher efficiency compared with WO\(_3\) used in the literature [12] and palladium-gold alloy in [35], because Pt has a catalytic effect; 3) the introduction of EDFA into the sensor will amplify the signal variations and thus has higher sensitivity.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The hydrogen concentration is measured as follows:

1. Place the sensing head in the gas chamber.
2. Use nitrogen at a flow rate of 200 ml/min to discharge the air within the chamber.
3. After all the gas in the chamber is removed, apply hydrogen to the air chamber and control its flow rate at 10 ml/min.

Comparing the transmission spectra before and after the introduction of EDFA, the Q-factor of the transmission spectrum of the sensor increased by 17.5 times. The optical signal-to-noise ratio (OSNR) and full width at half maximum (FWHM) improved from 3.78 dB and 2.1 nm to 32.45 dB and 0.12 nm, respectively.

The spectral response of the hydrogen sensor for different concentration rates is shown in Fig. 5(b). The light intensity at the peak wavelength of 1564 nm decreases from -32.41 to -61.9 dBm when the hydrogen concentration increases from 0 to 1.44 %. When the hydrogen concentration reaches 1.44 %, the OSNR of the output spectrum tends to zero. Even if the hydrogen concentration is further increased, the intensity of the output spectrum does not change significantly.
Figure 5. (a) Transmission spectrum comparison of hydrogen sensor before and after introducing EDFA, (b) Spectral response of the fibre hydrogen sensor to different concentrations of hydrogen, and (c) the relationship between the light intensity and hydrogen concentration.

<table>
<thead>
<tr>
<th>Method</th>
<th>Dynamic range (%)</th>
<th>Sensitivity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFBG with PDMS/WO$_3$ composite film</td>
<td>0 - 1.53</td>
<td>0.596 dB/%</td>
<td>[12] (2022)</td>
</tr>
<tr>
<td>TFBG coated palladium-gold alloy</td>
<td>0 - 2</td>
<td>0.1 dB/%</td>
<td>[35] (2020)</td>
</tr>
<tr>
<td>PCF coated with Pd-WO$_3$ hydrogen-sensitive film</td>
<td>0 - 1</td>
<td>1.09 nm/%</td>
<td>[37] (2017)</td>
</tr>
<tr>
<td>Pt/WO$_3$ powder coated TSDCF sensor</td>
<td>0 - 1.44</td>
<td>-21.25 dB/%</td>
<td>This paper</td>
</tr>
</tbody>
</table>

Next, we evaluated the stability of the hydrogen sensor by carrying out few measurements (i.e., three times) with each measurement lasting 30 minutes with an interval of 5 minutes for the hydrogen concentration of 0%. Fig. 6(a) illustrated the plots of the maximum light intensity as a function of time with a fluctuation of 1.26 dB. The repeatability of the hydrogen sensor is shown in Fig. 6(b) with a maximum error of 1.18 dB for a set of three measurement, which is lower than the light intensity fluctuation for the hydrogen concentration is 0%.

Figure 6. Hydrogen sensor: (a) the stability test for the hydrogen concentration of 0%, and (b) the repeatability plot.
To further investigate the long-term stability of the hydrogen sensor, a series tests were carried out over six days with the results shown in Fig. 7. The proposed hydrogen sensor display a stable intensity vs. the volume fraction of hydrogen in Fig. 7(a). According to Eqs. (2), the presence of reduction reaction will restore the hydrogen sensitive layer to Pt/WO$_3$, which happens by by exposing the hydrogen sensor to the air. Fig.7(b) shows the measured results of 10 cycles of oxidation-reduction reaction, demonstrating a rapid recovery time of the sensor.

The influence of relative humidity (RH) on the performance of the developed hydrogen sensor has been studied as shown in Fig. 8. The experiment was carried out by varying RH from 30 % to 65 % at a fixed temperature of 25 °C. The results show that as the RH increases from 30 % to 65 %, the wavelength shift and light intensity variation are 0.064 nm and -1.23 dB, respectively. This light intensity change is less than the light intensity fluctuation of the sensor within 30 minutes under 0% hydrogen concentration. The results show that the hydrogen sensor is not affected by the change of humidity.

Finally, we investigated the influence of Pt/WO$_3$ coating length on the fiber sensor with 3.5 cm long TSDCF. Fig. 10 shows the light intensity fluctuation against hydrogen concentration for the three different coating lengths of 0.5, 2.5, and 3.5 cm. The longest coated length displays the highest sensitivity to hydrogen with the slope of -25.55 dB/%. Whereas, for the 0.5 cm long coating the intensity fluctuation of the
sensor head is independent of the hydrogen concentration.

V. CONCLUSION

A high sensitivity TSDCF hydrogen sensor coated with Pt/WO$_3$ powder was proposed and experimentally studied. The sensor head was fabricated by attaching Pt/WO$_3$ powder to the PDMS film on the surface of TSDCF structure. We showed a sensitivity of -21.25 dB%/ppm for the hydrogen concentration varying from 0 to 1.44 %. At the same time, the effects of different coating lengths on the sensitivity of the sensor were studied. Experimental results showed that the sensitivity of the sensor increased with the coating length i.e., a slope of -25.55 dB%/ for a 3.5 cm long coating.

REFERENCES

Jiandong Liu is a graduate student with the School of Measuring and Optical Engineering, Nanchang Hangkong University. Here she mainly studies the application of optical fiber sensing.

Liang Chu received his PhD degree of condensed matter physics from Huazhong University of Science and Technology in 2014. Now he is a full professor at Hangzhou Dianzi
University. His current research interest focuses on optoelectronic nanodevices.

Bin Liu (Member, IEEE) received the B.S. and Ph.D. degrees from Sun Yat-sen University, China. Dr. Liu is an Associate Professor with the Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, China. He has over 80 publications in the area of photonics and holds 10 invention patents. His current research interests include optical fiber interferometer and the application for sensing, fiber biochemical sensors, optical micro-cavity and the application for sensing, surface plasmon resonant, Design and application of micro-nano photonic devices, optical nonlinearity and optical soliton, FBG sensing and distributed fiber sensing.

Juan Liu received her Ph.D. degree from Beijing Normal University, China. She is a lecture with Key Laboratory of Nondestructive Test (Ministry of Education) of Nanchang Hangkong University, China. Her main research interest is fiber optic sensing.

Yingying Hu received her Ph.D. degree from University of Science and Technology of China, China. She is a lecture with Key Laboratory of Nondestructive Test (Ministry of Education) of Nanchang Hangkong University, China. Her main research interest is fiber optic sensing and quntum random number.

Zabih Ghassemlooy (Fellow, SOA; Fellow, IET; Senior Member, IEEE; Member, ACM), BEng, BSc (Hons.) in EEE, 2014 joined Faculty of Eng. & Env., Northumbria University, UK as an Associate Dean Research, and currently is the Head of Optical Communications Research Group. He is a Research Fellow (2016-) and a Distinguished Professor (2015-) at the Chinese Academy of Science. Published 980 papers (415 journals and 8 books), over 110 keynote/invited talks, supervised 12 Research Fellows and 73 PhD students. Research interests are in areas of optical wireless communications (OWC), free space optics, visible light communications, hybrid RF-OWC, software-defined networks with funding from EU, UK Research Council, and industries. He is the Chief Editor of the British J. of Applied Science and Technology and the International J. of Optics and Applications, Associate Editor of several international journals, and Co-guest Editor of several special issues OWC.

Xing-Dao He was born in Jining, China, in 1963. He received the Ph.D. degree in optics from Beijing Normal University, Beijing, China, in 2005. He is currently a Professor with the Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, China. His current research interests include light scattering spectroscopy, optical holography, and information processing.

Jinhui Yuan received the Ph.D. degree in physical electronics from Beijing University of Posts and Telecommunications (BUPT), Beijing, China, in 2011. He is currently a Professor at the Department of computer and communication engineering, University of Science and Technology Beijing (USTB). He was selected as a Hong Kong Scholar at the Photonics Research Centre, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, in 2013. His current research interests include photonic crystal fibers, silicon waveguide, and optical fiber devices. He is the Senior Members of the IEEE and OSA. He has published over 200 papers in the academic journals and conferences.

Yangbo Zhou received the B.S. degree of physics and Ph.D. degree of condense physics from Peking University in 2007 and 2012 respectively. From 2012 to 2016, he was a postdoc research fellow working at Trinity College Dublin, Ireland. He is a professor at School of Physics and Materials Science, Nanchang University. He published more than 50 research articles.

Dejun Liu received his Ph.D. degree from Photonics Research Centre, Dublin Institute of Technology (DIT), Ireland in 2018. He was awarded “2018 Chinese Government Award for Outstanding Self-Financed Students Abroad” in 2019. He is currently an assistant professor with Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University. He has authored and co-authored over 50 publications. He is works as a guest editor of Sensors and topic editor of Frontiers in Sensors. His current research interests include optical fiber sensing and optical coherence tomography.

Yong Qing Fu received the Ph.D. degree from Nanyang Technological University, Singapore. He was a Reader with the Thin Film Centre, University of West of Scotland, Glasgow, U.K., and a Lecturer with Heriot-Watt University, Edinburgh, U.K. He then worked as a Research Fellow with the Singapore-Massachusetts Institute of Technology Alliance, and a Research Associate with the University of Cambridge. He has extensive experience in smart thin film/materials, biomedical microdevices, energy materials, lab-on-chip, micromechanics, MEMS, nanotechnology, sensors, and microfluidics. He has established a worldwide reputation from his pioneer research work on shape memory films, piezoelectric thin films, nanostructured composite/films for applications in MEMS, sensing, and renewable energy applications. He is currently a Professor with Northumbria University, U.K.

James Martin is a geophysicist with extensive research experience, particularly in physical and chemical measurement systems and signal fidelity. He has extensive signal processing and data analysis expertise, including the development and characterisation of fibre optic sensor measurement systems. James has contributed to the invention of over 109 patent families, mainly within the geophysics and measurement spheres and is currently working to develop geotechnical surveying methods.

Qiang Wu received the B.S. and Ph.D. degrees from Beijing Normal University and Beijing University of Posts and Telecommunications, Beijing, China, in 1996 and 2004, respectively. From 2004 to 2006, he worked as a Senior Research Associate in City University of Hong Kong. From 2006 to 2008, he took up a research associate post in Heriot-
Watt University, Edinburgh, U.K. From 2008 to 2014, he worked as a Stokes Lecturer at Photonics Research Centre, Dublin Institute of Technology, Ireland. He is an Associate Professor / Reader with Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, United Kingdom. His research interests include optical fiber interferometers for novel fiber optical couplers and sensors, nanofiber, microsphere sensors for bio-chemical sensing, the design and fabrication of fiber Bragg grating devices and their applications for sensing, nonlinear fibre optics, surface plasmon resonant and surface acoustic wave sensors. He has over 280 publications in the area of photonics and holds 8 invention patents. He is an Editorial Board Member of Scientific Reports, an Associate Editor for IEEE Sensors Journal and an Academic Editor for Journal of Sensors.