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ABSTRACT

Context. Amongst the different features and boundaries encountered around comets, one remains of particular interest to the plasma
community: the diamagnetic cavity. Crossed for the first time at 1P/Halley during Giotto’s flyby in 1986 and later met more than
700 times by ESA’s Rosetta spacecraft around Comet 67P/Churyumov-Gerasimenko, this region, almost free of any magnetic field,
surrounds nuclei of active comets. However, previous observations and modelling of this part of the coma have not yet provided a
definitive answer on the origin of such cavity and on its border, the diamagnetic cavity boundary layer (DCBL).
Aims. We investigate which forces and equilibrium might be at play and balance the magnetic pressure at this boundary down to the
spatial and temporal scales of the electrons in the 1D collisionless case. In addition, we scrutinise assumptions made in MHD and
Hybrid simulations of this environment and check for their validity.
Methods. We simulate this region at the electron scale by means of 1D3V Particle-In-Cell simulations and SMILEI code.
Results. Across this layer, depending on the magnetic field strength, the electric field is governed by different equilibria, with a thin
double-layer forming ahead. In addition, we show that the electron distribution function departs from Maxwellian and/or gyrotropic
distributions and that electrons do not behave adiabatically. We demonstrate the need to investigate in depth this region at the electron
scale with fully-kinetic simulations.
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1. Introduction

Comets are a formidable laboratory for plasma experiments. As
the nucleus’ surface is heated by the solar radiation, the ices
sublimate, turn into a gas which flow away from the nucleus
at several hundreds m s−1. This gas, in turn, is ionised by the
EUV solar radiation and accelerated Solar wind electrons such
that an ionosphere forms, directly from the surface. This cloud
of cometary ions and electrons will then interact with the ambi-
ent interplanetary plasma, mainly made of protons and electrons,
carrying a convective electric field. However, as comets have
very elliptical or hyperbolic trajectories, they may go through
different stages: as they get closer to the Sun, the outgassing
activity increases as well as photoionisation, and therefore, the
cometary ionosphere becomes denser. Noteworthily, within the
cometary ionosphere, a particular region forms around the nu-
cleus which is characterised by an extremely low ambient mag-
netic field, lower than 1 nT, the so-called diamagnetic cavity
(DC).

A cometary diamagnetic cavity has been observed for the
first time on the 13th/14th March 1986 (Neubauer et al. 1986)
during Giotto’s flyby (Reinhard 1986). As Giotto got closer to
the nucleus, the magnetic field strength slowly increased and
then abruptly dropped to almost zero for 2 minutes at around
4600 km (Neubauer 1987). The surface which encased the cavity
got the name of “contact surface”. In the literature, this bound-
ary was also referred to as the ‘ionopause’ (Ma et al. 2008).
Cravens (1986) ruled out the use of the latter term as in the case

of Venus: this was defined as the boundary where the magnetic
pressure balances the thermal plasma pressure which might not
be the case at 1P/Halley. This region is also commonly called
“cavity boundary” or simply “boundary” (e.g. Goetz et al. 2016;
Goetz et al. 2016; Gunell et al. 2017). A more appropriate name
in regard to the results presented here and used by Israelevich
et al. (2003) is the term Diamagnetic Cavity Boundary Layer
(DCBL). Through this paper, we will privilege the latter. The
origin of the diamagnetic cavity and the balance at play at the
contact surface are still debated. At the time, a possible expla-
nation brought by Cravens (1987) and Ip & Axford (1987) was
that the magnetic pressure was counterbalanced by the ion neu-
tral drag, that is to say, the force applied by the neutral on the
plasma (mainly ions) by means of ion-neutral collisions as they
move at different velocities. However, the calculation relied on
assumptions about the geometry of the cavity which is difficult
to gauge with single spacecraft observations: (i) the ion speed is
close to zero at the boundary and outwards, or (ii) the cometary
plasma is at photochemical equilibrium. To be applicable, this
balance at the boundary requires that (Cravens 1986):

−∇

(
B2

2µ0

)
· (V − Un) > 0, (1)

where V stands for the mean plasma velocity and Un for that of
the neutrals, showing that the equilibrium may not hold if ions
travel faster than the neutrals along the gradient direction of the
magnetic pressure.
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Almost 30 years later, from 2014 to 2016, the Rosetta
mission (Glassmeier et al. 2007a), orbiting around Comet
67P/Churyumov-Gerasimenko (Churyumov & Gerasimenko
1972), gave us the unique opportunity to explore the plasma en-
vironment of a comet over an extended period of time and fol-
low its evolution: a heliocentric distance from 1.24 au (perihe-
lion) to 3.8 au (end of mission), an outgassing rate from 1025 s� 1

to slightly below 1029 s� 1 (Simon Wedlund et al. 2019, 2020).
Thanks to its onboard magnetometer (RPC-MAG, Glassmeier
et al. 2007b), a diamagnetic cavity was also observed but this
time over an extended period as Rosetta, unlike Giotto, was not
a �yby mission. In the middle of its escort phase, Rosetta crossed
multiple times the DCBL from April 2015 to February 2016
(Goetz et al. 2016; Götz 2019). It went in and out the cavity more
than 600 times for short periods of time (from several tens of
seconds to tens of minutes). However, Rosetta was an extremely
slow spacecraft, not exceeding a few m s� 1 except during ma-
noeuvres and excursions, meaning that the DCBL was a moving
boundary likely behaving like ebb and �ow passing over the im-
mobile spacecraft: the origin of this behaviour is not solved and
not clearly understood yet. Finally, crossings occurred at much
closer distances from the nucleus than at 1P, between 50 and
400 km, obviously linked to di� erent outgassing rates and he-
liocentric distances. Nevertheless, these crossings occurred far-
ther out than anticipated by models (Rubin et al. 2012; Koenders
et al. 2015).

The understanding of this boundary and the birth of the dia-
magnetic cavity requires plasma modelling and experiments. Re-
garding modelling, three di� erent approaches exist in the case
of comets: magnetohydrodynamics (MHD), hybrid, and full ki-
netic Particle-In-Cell (PIC). MHD models have the ability to
model large-scale structures, especially at large outgassing rates
(& 1027 s� 1) and the interaction between the cometary iono-
sphere and the Solar wind for instance. However, ions and elec-
trons are treated both as �uids, and ion gyroradius scales cannot
be resolved in MHD. Additional assumptions are made regard-
ing the electron pressure, the generalised Ohm's law, and the
treatment of Maxwell's equations (e.g. assuming plasma quasi-
neutrality and neglecting the displacement current in the low-
frequency limit). Although MHD models in general do exhibit
a diamagnetic cavity around the comet's nucleus and seem to
agree with single-spacecraft observations (e.g. see Rubin et al.
2014; Huang et al. 2016, 2018) with similar sizes, the origin and
equilibrium at play at the DCBL is still not understood. For ex-
ample, Maxwell's equations are not self-consistently solved and
the inclusion of the Hall term in the Maxwell-Faraday (induc-
tion) equation may lead to very di� erent geometries or sizes of
the diamagnetic cavity (Huang et al. 2018). Indeed, this deter-
mines whether the magnetic �eld is frozen-in with the ions or
the electrons. Moreover, some of these models might ignore ion-
neutral chemistry whereas in-situ observations have shown that
the latter was signi�cant in particular near perihelion (Beth et al.
2020) when diamagnetic cavity crossings were more likely to be
observed. Finally, the spatial discretisation of the domain intro-
duces a numerical resistivity and therefore a numerical di� usion
of the magnetic �eld which prevents reliable studies in a quasi-
collisionless case.

Hybrid models still treat electrons as a �uid while ions are
treated as clouds of macro-particles with their own probabilis-
tic weight. The ion velocity is updated and pushed in time using
the fundamental relation of the dynamics, which may include
a Langevin term to reproduce the ion-neutral drag (e.g. Puhl-
Quinn & Cravens 1995). This corresponds to a continuous treat-
ment of the collisions. As the number of neutral molecules is

much larger than that of ions, during each time step, there are
enough collisions with the neutrals that the total transfer of mo-
mentum can be modelled as an average friction force. This ap-
proximation can hold only if the cell size is much larger than the
mean free path of the ions. There are also hybrid models which
treat the collisions with a probabilistic approach (e.g. Koenders
et al. 2015; Simon Wedlund et al. 2017; Alho et al. 2019).

It is only recently that full-PIC simulations have been car-
ried out at comets in a very limited case for an outgassing
rate of 1025 s� 1 when collisions may be negligible. Indeed,
in contrast to hybrid and MHD models, PIC models are de-
signed to primarily simulate collisionless plasmas (driven by
the Klimontovich equation) and solve electromagnetic �elds
self-consistently. Deca et al. (2017) performed a four-species
(cometary ions and electrons, solar-wind protons and electrons)
simulation of 67P for the conditions met at� 3 au with iPIC3D
(Markidis et al. 2010), including an implicit numerical scheme
(Mason 1981; Brackbill & Forslund 1982). Indeed, implicit
schemes alleviate constraints present in explicit PIC models: ob-
serving the Courant-Friedrich-Levy (CFL, Courant et al. 1928)
condition (c� t � � x) and preventing the so-called grid instabil-
ity (� x . � e;De, Hockney & Eastwood 1988; Birdsall & Langdon
2004). Implicit PIC models allow to model larger spatial scales
with larger timesteps (Deca et al. 2017). However, the �uctua-
tions of the electric �eld might be damped as the fast motion
of the electrons is not resolved, like in iPIC3D (Markidis et al.
2010). Nevertheless, these models are valuable in giving us a
�avour of the complex interaction between the Solar wind and
the cometary ionosphere in the collisionless regime. In particu-
lar, they contribute to the understanding of the energisation of the
solar wind electrons that dive towards the comet's nucleus (see
Galand et al. 2020). Although PIC simulations allow us to access
to the physics at smaller scales, the main drawback is that only a
few do include collisions by means of a Monte-Carlo approach
(so-called PIC-MMC). This should be kept in mind as observa-
tions point out that plasma boundaries are correlated with the ion
exobase (Mandt et al. 2016) or the electron exobase regarding the
DCBL (Henri et al. 2017).

Prior to Giotto's �yby, active experiments in space were per-
formed in order to simulate how a plasma cloud expands into a
magnetised environment providing insight on how the cometary
plasma interacts with the Solar wind. These experiments are
known as AMPTE (Active Magnetospheric Particle Tracer Ex-
plorers) (Valenzuela et al. 1986) from an original idea of Bier-
mann et al. (1961). They consisted in the release of primarily a
barium cloud into the Solar wind with the phenomenon probed
in situ during the release. Lühr et al. (1986) and Haerendel et al.
(1986) focused on respectively the magnetic �eld observations
and the plasma dynamics. A similar experiment was set later
with lithium (Lühr et al. 1986). During both releases, a diamag-
netic cavity was formed around the cloud. However, it could
not be maintained as ions were not replenished like at comets
through ionisation of the continuously outward-expanding neu-
trals.

In recent years, other experiments have been performed to
simulate diamagnetic cavities in the laboratory (e.g. Bonde et al.
2015, 2018). In these experiments, a plasma was produced by a
laser pulse hitting a target, and a diamagnetic cavity formed as
the plasma expanded in the surrounding magnetic �eld.

Although there are many approaches and attempts to tackle
the origin of the diamagnetic cavity, little is known and its ori-
gin is still debated. However, no full kinetic simulation had ever
been employed to investigate its formation until now. This pa-
per is the �rst report and attempt of using a PIC simulation in
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such a case, allowing to look at physical phenomena down to
the electron scale and the electron velocity distribution function,
that is, the behaviour of electrons at the kinetic scales through
this transition region. The paper is organised as follows. In Sec-
tion 2, we describe the numerical model used for the simulations
as well as the set-up. In Section 3, we present the results from
the simulations such as electromagnetic �elds, thermodynamics
variables, and distribution functions, followed by the discussion
focused on the properties of the electrons through the DCBL in
Section 4. Finally, we summarise our �ndings and propose future
investigations in Section 5.

2. Method

2.1. Formalism

In this work we have simulated the DCBL using the PIC method.
In this section, we review the basics of the method and its rela-
tion to the kinetic and �uid theory of plasmas that we use in our
analysis. PIC simulations represent the plasma by a �nite num-
ber of macro particles (so-called Klimontovich-Dupree repre-
sentation) and solving the Klimontovich equation (Klimontovich
1958; Dupree 1963). In this representation, the velocity distribu-
tion function fs of the speciess is discrete and given by:

fs(r; v; t) =
NX

j=1

Wj � r(r � r j(t))� v(v � vj(t)) (2)

whereN is the number of macroparticles in the simulation,r j(t)
is the position of the macroparticlej at timet, v j(t) is its veloc-
ity, andWj is its associated weight. However, numerically, due
to space discretisation, the Dirac function in space� (r � r i(t))
should be replaced by a shape function `S' which deposits the
charge and the current of the macro-particle onto spatial grid
points.

For plasmas, in the limit when the plasma parameter� =
4� ne� 3

D is large enough (i.e. a weakly coupled and uncorrelated
plasma, with no pair interactions between particles), the distri-
bution function becomes solution of the Vlasov equation as the
sources and losses have been ignored, which gives a continuous
description of the plasma in space and velocity such that:

@t fs = � v � r r fs �
qs

ms
(E + v � B) � r v fs (3)

with the electric E and magneticB �elds solutions of
Maxwell's equations:

r r � E = q
ni � ne

" 0

r r � B = 0
@tB = �r r � E
@tE = c2r r � B � � 0c2(qniV i|{z}

J i

� qneVe|   {z   }
Je

)

whereni (ne) stands for the total ion (electron) number density,
V i (Ve) stands for the mean ion (electron) bulk velocity, andJ i
(Je). stands for the mean ion (electron) current. Each quantity is
function of space and time.

Due to the �nite number of particles, it is not possible to ob-
tain a continuous description offs in phase space. Nevertheless,
fs has moments, solutions of the di� erent equations in MHD
and hybrid simulations in the limit of a large plasma param-
eter (� � 1) to limit the correlation between particles. Fluid

equations are not solved in a PIC simulation, but �uid quantities
derived from the moments of the velocity distribution function
(VDF), can be of interest when analysing the results, as we shall
see in Sect. 3. For instance, the continuity equation for speciess
in absence of source and loss:

@tns = �r � (nsVs)

and the momentum equation:

ms@t(nsVs) = � r �

dynamic pressure tensorPs;dynz            }|             {
(msnsVs 
 Vs)

� r � Ps;th|{z}
thermal pressure tensor

+ qsns(E + Vs � B)
|                 {z                 }

Lorentz force

(4)

can be both written in conservation form. By adding both mo-
mentum equations from the ions (indexi) and the electrons (in-
dexe), we end up with:

mi@t(niV i) + me@t(neVe) + " 0@t(E � B) =
� r � Pi;dyn � r � Pe;dyn � r � Pi;th � r � Pe;th + r � � (5)

where:

� = " 0E 
 E +
B 
 B

� 0
�

 
" 0E2

2
+

B2

2� 0

!
I3 (6)

is the Maxwell stress tensor (a matrix),Pi;th (Pe;th) is the ion
(electron) thermal pressure tensor, andI3 is the identity matrix. In
the MHD limit, the energy stored in the electric �eld is negligible
compared with the magnetic energy (i.e.c2E2 � B2). Finally,
when the electrons are assumed massless, the electric �eld can
be derived explicitly through the electron momentum equation,
the so-called generalised Ohm's law given by:

E � �
r � Pe;th

qne
� Ve � B (7)

Eq. 7 will be scrutinised and veri�ed in the context of our
simulation in Section 3.3. As the simulation is performed in 1D
alongx, Maxwell's equations can be simpli�ed as follows:

@xEx =
q(ni � ne)

" 0
@xBx = 0

@tBy = +@xEz @tBz = � @xEy

@tEx = � � 0Jx

@tEy = � � 0Jy � c2@xBz @tEz = � � 0Jz + c2@xBy

This set of equations, alongside the generalised Ohm's law,
is important to keep in mind in order to interpret our results pre-
sented in Section 3. Finally, a word of caution must be said here.
As sources and losses have been ignored in particular in the con-
tinuity equation of both species, it is impossible to reach equi-
librium as it would mean thatnsVs � ex = constant as the simula-
tion is performed in one spatial dimension. As the initial number
density is imposed and decreasing as a function ofx, steady state
would requireVs�ex / 1=ns. In addition, the simulation time can-
not be too long as in the real world, ions and electrons are con-
tinuously produced through photoionisation and electron-impact
and therefore the initial reservoir of ions and electrons would be
replaced and refurnished with these newborn ions and electrons,
not taken into account here.
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2.2. Setup and initial conditions

The PIC simulations have been carried out with SMILEI, an
explicit and Cartesian high-performance open-source code de-
signed to simulate various plasma physics situations, from astro-
physics to relativistic laser-plasma interactions (Derouillat et al.
2018). The simulation is setup in 1D3V con�guration: thermo-
dynamic quantities are only depending on the spatial directionx
while particles in the velocity phase space may still evolve in the
3 directions in the velocity space. Firstly, as an explicit scheme,
the simulation time step should be small enough to prevent light
waves from propagating more than 1 cell at any given time (the
so-called Courant-Friedrichs-Lewy condition), that is,c� t � � x
for a strict stability. However, in practice, it may be necessary
to restrain them (c� t < � x). Secondly, in order to prevent nu-
merical heating, the grid resolution� x should resolve the elec-

tron Debye length� e;De =
q

" 0kBTe
q2ne

(� x < � e;De). The SMILEI
unit of length is the electron skin depthLe;sd = c=! pe so that

� e;De=Le;sd =
q

kBTe
mec2 . As our investigations are in the frame of

classical physics and `cold' plasmas, we needkBTe � mec2.
Nevertheless, we cannot use realistic electron temperatures, of
the order of a few tens of eVs. Indeed, we have the hierarchical
relation:

no instabilityz      }|       {
c� t � � x|      {z      }

CFL

� � e;De � Le;sd|          {z          }
kBTe� mec2

� Ncell� x (8)

and

! pe� t �

s
kBTe

mec2

The initial temperature of the plasma constrains the timestep
and the total run time of the simulations. Therefore, trade-o� s
must be made. For our simulations, we initialise the electrons
with a thermal energy ofkBTe = 0:01mec2. This value ap-
pears relatively large compared with the reality (aroundkBTe �
10 eV) but according to Inequality 8, applying a realistic elec-
tron temperature is in fact unfeasible in terms of computational
resources. Indeed, reducing the temperature will require to re-
duce both� x and� t, increasing drastically the runtime for sim-
ulating the same spatial and temporal domain. In addition, as
later discussed in Section 4, �uctuations of the electric �eld
in the unmagnetised �eld will be theoretically larger for lower
Debye lengths if the number of particles per cell is kept con-
stant between simulations. Moreover, it should be noted that
because the initial number density is not uniform alongx, ! pe
and� e;De are not either. However, the inputs are de�ned with re-
spect to the highest plasma number densityn0 = ni(0; 0) mean-
ing that! pe(x; 0) < ! pe(0; 0) and� e;De(0; 0) < � e;De(x; 0) ensur-
ing stability and no numerical heating. For our simulations, we
chosen0 = 109 m� 3 which is typical of ion densities observed
around perihelion, during DC crossings (Henri et al. 2017; Ha-
jra et al. 2018).n0 corresponds to the plasma number density
on the left side of the simulation box (x = 0). Nevertheless,
at the DCBL (x = Lbox=2), the number density is close to
n0 exp(� 2) � 0:13n0, one order of magnitude less than obser-
vations.

To perform a full kinetic simulation, two additional ingredi-
ents are required: a spatial grid and a particle pusher. Regarding
the grid, we used the default one in SMILEI, the Yee grid (Yee

1966), which is the only one available for 1D geometry. Regard-
ing the particle pusher, several options are available in SMILEI.
All have their pros and cons. To be accurate, a pusher should
be ultimately symplectic. At the moment, none of the pushers,
Boris', Vay's or Higuera and Cary's that are available in SMILEI
(Boris & Shanny 1970; Vay 2008; Higuera & Cary 2017) have
this property. Each scheme may introduce errors at di� erent lev-
els (Ripperda et al. 2018). For this simulation, we chose Higuera
and Cary's pusher.

Finally, the simulation needs appropriate initial and bound-
ary conditions both for the species and electromagnetic �elds.
For the ions and electrons, we start from an initial pro�le de-
creasing exponentially alongx. Although at comets, ion and
electron number densities should decrease as 1=r wherer is the
cometocentric distance (Gombosi 2015; Beth et al. 2019), this
holds only for a spherical symmetry. Here, the simulation is per-
formed in Cartesian geometry alongx and therefore it is not per-
fectly representative of a comet. The choice for an exponential
pro�le has in fact one purpose and bene�t. As we initialise with a
constant electron temperatureTe, in regions where the magnetic
�eld is constant, the electric �eld is purely ambipolar such that
Ex � (kBTe=q)@xne=ne. If the electron number densityne follows
an exponential law,Ex is almost constant. That is very helpful
because it can be easily estimated from inputs and should be con-
stant through the simulation box. At the boundaries, we do not
inject ions. However, for the lower bound (x = 0, closer to the
comet), ions and electrons are re�ected and thermalised while
for the upper bound they are purely lost. Regarding electromag-
netic forces, the best choice seems to be Silver-Müller bound-
ary conditions (Barucq & Hanouzet 1997) to prevent trapping of
waves (especially light waves) within the box.

3. Results

We set up a 1D3V PIC simulation of the DCBL. The spatial
dimension is denoted byx, and thex axis crosses the DCBL.
The left-hand side (x = 0) is located inside the diamagnetic
cavity, and the right-hand side in plasma surrounding the cav-
ity. The simulated region is initialised with a plasma whose
density decreases with increasingx and which is unmagnetised
for low and magnetised for highx values. The time step is
0:081! � 1

pe;0 � 4:54 � 10� 8 s where! pe;0 corresponds to the high-
est plasma frequency met at the start of the simulation (i.e. at
x = 0). We run the simulation over more than 750000 time steps
which corresponds to� 0:035 s real time. Values of the elec-
tromagnetic �elds (E; B) and of the thermodynamic quantities
(number densityn, currentJ, thermal pressure tensorP of both
species, ions and electrons) have been recorded every 100 time
steps as the PIC simulation uses a substantial memory. The ini-
tialisation of the simulation is summarised in Table 1 and Fig. 1.
One word should be said regarding the magnetic �eld pro�le. Al-
though the shape was enforced, several tests were made on the
most suitableHB. Interestingly, steeper values (i.e.. 400LDe,0)
generated large amplitude waves in the electromagnetic �elds
towards the unmagnetised region. In addition, if too steep, the
magnetic pro�le relaxes quickly towards a gentler pro�le with a
scale height close toHB. In that respect, we initialise the simu-
lation directly to this stabler value. Moreover, around the DCBL
as indicated in Fig. 1,HB corresponds to 140 localLDe (the De-
bye length increases withx asne decreases andTe is constant
at the onset) and 14c=! p;e. This is of the order of the value sug-
gested by Grad (1961). Although unknown at that time, Grad
(1961) analytically explored a DCBL-alike con�guration of the
plasma and magnetic �eld and estimated the “thinnest” magnetic
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Fig. 1. Initial setup and pro�les for ions, electrons, and magnetic �eld
in our simulation box. Ion temperature is not indicated as it is set to 0.

�eld pro�le. He found that the minimal width should be around
� 8c=! p;e.

3.1. Energy density of Electromagnetic �elds E and B

Figure 2 shows the evolution over time of the energy stored in
the di� erent components of the electric �eld during the simu-
lation in SMILEI units (heren0mec2). We also over-plotted the
di� erent speeds of interest in case waves are present: the speed of
light (c), the thermal speed of the electrons (

p
kBTe=me � 0:1c),

and the ion acoustic speed (
p

kBTe=mi � 0:001c). The ion ini-
tial speed (10� 4c) is not displayed as it would be almost verti-
cal. Distinct features may be seen in the di� erent components.
In the top panel (" 0E2

x), there is a layer of disturbance on the
left side (x � 0) associated with box boundary e� ects. For the
left side, we chose a boundary which re�ects ions and elec-
trons with the initial speed and temperature set at the beginning
of the simulation. Interestingly, the boundary moves at di� er-
ent speeds during the simulation. The boundary appears around
0:003 s, moving at around the electron thermal speed and then,
at � 0:005 s, the boundary slows down and moves roughly at
the ion acoustic speed. Another perturbation is propagating from
the right side of the box (x � Lbox), inwards. Although we set a
Silver-Mueller boundary condition, particles are removed there.
As electrons are propagating and leaving the box faster than the
ions, an electric �eld is set to remove the ions at the same speed
than the electrons. The characteristic speed of the perturbation
is not identi�ed as it is between the ion acoustic speed and the
electron thermal speed. As long as both perturbations remain far
from the diamagnetic cavity boundary layer, initialised around
x � 200� 300 km, it should not a� ect our results.

Regarding" 0E2
x, perturbations are only associated with the

current alongx such that:

@t" 0E2
x = � 2JxEx

whereJx is the plasma current alongx. Away from the DCBL
where the magnetic �eld can be assumed constant, we see that
the �uctuations ofE2

x are on average smaller in the magnetised
part (Bz(x) � B0) than in the unmagnetised one (Bz(x) � 0). The

c

vth;e

vth;i

Fig. 2. Colour plot (position vs time) of the energy stored in the di� er-
ent electric �eld components. As an indication, lines with squares rep-
resent the propagation of structures at di� erent speeds. From the most
horizontal line to the most vertical one (with squares): speed of light
in vacuum, thermal speed of the electrons

p
kBTe=me, and ion acous-

tic speed
p

kBTe=mi . The vertical line with circles is located at 0:5Lbox,
whereBz is originally B0=2. The colourbar is in logscale (di� erent for
each plot) and SMILEI units (heren0mec2).
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Table 1.Simulation setup

Parameters Values Simulation units More physical units
n0 109 [m� 3]
kBTe 0.01 [mec2] � 5:11 keV
vi 10� 4 [c] � 30 km s� 1

mi 10000 [me] � 5:5 Da

! pe;0

s
q2n0

me" 0
� 1:78� 106 [s� 1]

L0 c=! pe;0 [m] � 168 m

Le;De;0

r
" 0kBTe

q2n0
= 0:1L0 [m] � 16:8 m

� x 0:9Le;De;0 [m] � 15:1 m
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HB 400LDe;0 [m] � 6:7 km

Bz(x; t = 0) 0:5
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mean electric �eld in both parts, magnetised and unmagnetised
alike, is the ambipolar �eld, of the same value. However, as ions
and electrons are magnetised, this prevents or limits any spu-
rious currentJx which drives the �uctuations. The largest val-
ues and �uctuations ofE2

x are observed near the DCBL, and,
over time, on each side, with higher values within the unmagne-
tised part. The DCBL enlarges over time but this become clearer
in E2

y discussed thereafter. The �anks move away from the ini-
tial position of the boundary faster than the ion acoustic speed
(vth;i �

p
kBTe=mi = 10� 3c) but slower than the electron thermal

speed (vth;i �
p

kBTe=mi = 0:1c). In fact, further investigations
showed that the DCBL enlarges at a speed closer to the local
Alfvén speed. Within the layer,Ex is almost 0 due to a diamag-
netic current as will be discussed in detail in Section 4.

The variations ofE2
y are quite interesting in Fig. 2, middle

panel. At the beginning of the simulation, we observe the prop-
agation of light waves from the left side of the simulation box
which are absorbed by the right side, more likely as boundary
e� ects. However, from 0.001 s to 0.005 s, light waves start from
the boundary. The presence of large �uctuations ofE2

y highlight
that our initial magnetic pro�le is not at equilibrium. Indeed, the
temporal variations ofE2

y are entangled with those ofB2
z such

that:

@t(" 0E2
y + B2

z=� 0) = � 2JyEy � 2" 0@xEyBz

At the beginning of the simulation and until 0.005 s, the �uc-
tuations are located at the DCBL, more towards the unmagne-
tised side. After 0.005 s, the DCBL starts to form and the �uc-
tuations split into two components, along each �ank. They seem
di� erent in nature as they have di� erent characteristics such as
time scale. However, this is maybe biased by the fact that the
sampling rate of the �eld is lower than the typical frequency
(e.g. the plasma frequency) and therefore the perceived frequen-
cies are aliased (i.e. modi�ed by the sampling rate, we do not

comply with the Nyquist–Shannon sampling theorem as we are
limited by data storage) and not accurate. In order to identify or
understand the nature of these waves, we perform a Fast Fourier
Transform. Figure 3 shows 2D Fast Fourier Transform ofEy
around the cavity between 22.7 and 25.7 km (left panel) and in
the magnetised region (right panel), from 0 to 0.005 s in time.
The diagram shows aliased typical dispersion for light waves and
plasma waves, preferentially propagating to the right direction.
As Maxwell's equations are solved using Finite Di� erence Time
Domain, the dispersion relation for waves is modi�ed, mainly at
large wave numbersk. For instance, the wave dispersion relation
for modi�ed light waves (! 2 = c2k2) becomes:

sin2
 
! � t

2

!
=

c2� t2

� x2
sin2

 
k� x
2

!
(9)

and for plasma waves (! 2 = ! 2
pe + c2k2)

sin2
 
! � t

2

!
=

! 2
pe� t2

4
+

c2� t2

� x2
sin2

 
k� x
2

!
(10)

In addition, they are aliased. The sampling rate of the
�elds is 100� t and thus the range of! � t covered here is
[� �=100;�=100]. The numerically-modi�ed wave dispersion be-
comes:

! � t � � 2 arcsin

0
BBBBBBB@

s
! 2

pe� t2

4
+

c2� t2

� x2
sin2

 
k� x
2

!1CCCCCCCA (mod
2�
100

)

(11)

Similarly, the same relation can be used for light waves by set-
ting ! pe = 0.

Article number, page 6 of 17



A. Beth: 1D3V PIC simulation of the DCBL

Fig. 3. 2D Fast Fourier Transform ofEy between 227 and 257 km (left
panel, DCBL location) and between 348 and 408 km (right panel, mag-
netised part), both between 0 and 0.005 s. Sampling rates are� x in
space and 100� t in time. For the right panel, as we are in the magne-
tised part, the pulsation is given in terms of electron cyclotron pulsation.

Plasma waves appear and seem likely trapped: they strug-
gle to propagate through the magnetised region and they are un-
likely to propagate towards the left as the plasma density and
! pe are higher. Indeed, as there is a gradient in the plasma den-
sity, the plasma frequency decreases asx increases. On the right
side of the boundary, within the magnetised part, the perturba-
tions are associated with the electron cyclotron frequency and
the dispersion relation diagram (Fig. 3, right panel) reveals the
presence of electron Bernstein waves. We remind the reader that
the wave analysis is limited to the electrons here. Although quan-
tities are recorded every 100 time steps, the plasma frequency is
not uniform and decreases for increasingx such that the highest
frequency resolved near the cavity (where it isni � 0:15n0) is
around the plasma frequency. Indeed, although the plasma fre-
quency decreases alongx, the `perceived' plasma frequency os-
cillates between 0 and the sampling rate through the simulation
box.

Finally, regardingE2
z as seen in Fig. 2 (bottom panel), noth-

ing noticeable appears except for the propagation of light waves
at the beginning of the simulation. Due to the symmetry of the
simulation,

@t(" 0E2
z + B2

y=� 0) = � 2JzEz + 2" 0@xEzBy

Ez andBy are expected to be zero or very small.
Figure 4 shows the energy density stored in the di� erent

components of the magnetic �eld,B2
y andB2

z, Bx being null. Like
E2

z, the diagram ofB2
y (top panel) shows the presence of light

waves during the �rst few milliseconds of the run. However, un-
like E2

y, the �uctuations ofB2
y are larger in the unmagnetised re-

gion than in the magnetised region dominated by az-component.
In the bottom panel,B2

z evolves slowly though time and does not
�uctuate. It is the only electromagnetic �eld initialised to a non-
zero value with a spatial pro�le. However, a slight and weak in-
crease in the �eld emerges from 0.025-0.03 s and moves away
from the cavity (see inset in Fig. 4). Its origin will be tentatively
addressed in Section 3.3.

3.2. Thermodynamics quantities

Figure 5 shows thexx component of the dynamic and thermal
pressures tensors of ions and electrons, that is to say,

Ps;dyn = nsmsVs 
 Vs

Ps;th =
Z

(v � Vs)(v � Vs)T fs(r; v; t) d3v (12)

Fig. 4. Colour plot (position vs time) of the energy stored in the di� er-
ent magnetic �eld components. Due to the symmetry,Bx is null. As an
indication, lines with squares represent the propagation of structures at
di� erent speeds. The inset is a zoom of the red box along the boundary.
The colourbar is in logscale and SMILEI units (heren0mec2). Refer to
Fig. 2 for details.

The ion dynamic pressure in the magnetised and unmagne-
tised regions (top left panel) increases because of the ion accel-
eration by the ambipolar electric �eld. As the initial ion speed
(10� 4c) is below the ion acoustic speed (10� 3c), ions are acceler-
ated up to 2� 10� 4c at the end of the simulation. At the DCBL,
we observe an increase of the ion dynamic pressure induced by
ions going backward (Vi;x < 0). Indeed, due to the steep increase
of Bz, ions are repelled by the magnetic barrier and accelerated
by the Hall term in Ohm's law. At the beginning of the simula-
tion, if we apply Ohm's law for thex component of the electric
�eld, one �nds:

Ex(x; 0) � �
1

qne
@x

 
Pe;xx(x; 0) +

B2
z(x; 0)
2� 0

!
�

kBTe

qHn
�

@xB2
z(x; 0)

2qne� 0

(13)

Article number, page 7 of 17


	Introduction
	Method
	Formalism
	Setup and initial conditions

	Results
	Energy density of Electromagnetic fields bold0mu mumu EEEEEE and bold0mu mumu BBBBBB
	Thermodynamics quantities
	Electron dynamics
	Electron distribution function

	Discussion
	The electric field and its reliability
	Agyrotropy and non-adiabaticity of the electrons
	Are any of these plasma characteristics observable with past and future cometary missions?

	Conclusions
	Anisotropy in the electron distribution function

